Turn off MathJax
Article Contents
Zhonghua Zhang, Meijia Song, Conghui Si, Wenrun Cui, Yan Wang. Amorphous germanium-crystalline bismuth films as a promising anode for magnesium-ion batteries[J]. eScience. doi: 10.1016/j.esci.2022.07.004
Citation: Zhonghua Zhang, Meijia Song, Conghui Si, Wenrun Cui, Yan Wang. Amorphous germanium-crystalline bismuth films as a promising anode for magnesium-ion batteries[J]. eScience. doi: 10.1016/j.esci.2022.07.004

Amorphous germanium-crystalline bismuth films as a promising anode for magnesium-ion batteries

doi: 10.1016/j.esci.2022.07.004
  • Received Date: 2022-03-06
  • Revised Date: 2022-07-04
  • Accepted Date: 2022-07-22
  • Available Online: 2022-08-29
  • Magnesium-ion batteries (MIBs) are promising alternatives to lithium-ion batteries due to their safety and high theoretical specific capacity, and the abundance of magnesium reserves. However, their anodes and electrolytes severely restrict the development of MIBs, so alloy-type anodes provide an effective strategy to circumvent the surface passivation issue encountered with Mg metal in conventional electrolytes. Theoretically, a germanium anode can deliver a high specific capacity of 1476 mAh g-1, but hitherto, no experimental reports have described Ge in MIBs. Herein, we experimentally verified that Ge could reversibly react with Mg2+ ions through the design of dual-phase Ge-Bi film electrodes fabricated by magnetron co-sputtering. Notably, a Ge57Bi43 electrode delivered a high specific capacity of 847.5 mAh g-1, owing to the joint alloying reactions of Ge and Bi with Mg, which was much higher than the specific capacity of Bi (around 385 mAh g-1). Moreover, the Ge-Bi anode showed excellent rate performance, good cycling stability, and superior compatibility with conventional electrolytes such as Mg(TFSI)2. More importantly, the Mg storage mechanism of the Ge-Bi anode was unveiled by operando X-ray diffraction, and density functional theory calculations rationalized that the introduction of Bi to form Ge-Bi evidently decreased the defect formation energy and effectively boosted the electrochemical reactivity of Ge with Mg.
  • loading
  • D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Prototype systems for rechargeable magnesium batteries, Nature 407(2000) 724-727.
    D. Li, Y. Yuan, J. Liu, M. Fichtner, F. Pan, A review on current anode materials for rechargeable Mg batteries, J. Magnes. Alloy. 8(2020) 963-979.
    F. Xiong, Y. Jiang, L. Cheng, R. Yu, S. Tan, C. Tang, C. Zuo, Q. An, Y. Zhao, J.J. Gaumet, L. Mai, Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries, Interdiscip. Mater. 1(2022) 140-147.
    D. Aurbach, M. Moshkovich, A. Schechter, R. Turgeman, Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy, Electrochem. Solid-State Lett. 3(2000) 31-34.
    D. Aurbach, A. Schechter, M. Moshkovich, Y. Cohen, On the mechanisms of reversible magnesium deposition processes, J. Electrochem. Soc. 148(2001) A1004-1014.
    M. Matsui, Study on electrochemically deposited Mg metal, J. Power Sources 196(2011) 7048-7055.
    F. Liu, T. Wang, X. Liu, L.Z. Fan, Challenges and recent progress on key materials for rechargeable magnesium batteries, Adv. Energy Mater. 11(2020) 2000787.
    M. Asif, S. Kilian, M. Rashad, Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures, Energy Stor. Mater. 42(2021) 129-144.
    Z. Zhang, S. Dong, Z. Cui, A. Du, G. Li, G. Cui, Rechargeable magnesium batteries using conversion-type cathodes:a perspective and minireview, Small Methods 2(2018) 1800020.
    R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Anode-electrolyte interfaces in secondary magnesium batteries, Joule 3(2019) 27-52.
    Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions, J. Electroanal. Chem. 466(1999) 203-217.
    J. Muldoon, C.B. Bucur, A.G. Oliver, J. Zajicek, G.D. Allred, W.C. Boggess, Corrosion of magnesium electrolytes:chlorides-the culprit, Energy Environ. Sci. 6(2013) 482-487.
    O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries, J. Electrochem. Soc. 155(2008) A103-A109.
    N. Wu, Y.-C. Lyu, R.-J. Xiao, X. Yu, Y.-X. Yin, X.-Q. Yang, H. Li, L. Gu, Y.-G. Guo, A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries, NPG Asia Mater. 6(2014) e120.
    T.S. Arthur, N. Singh, M. Matsui, Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries, Electrochem. Commun. 16(2012) 103-106.
    Y. Cheng, Y. Shao, L.R. Parent, M.L. Sushko, G. Li, P.V. Sushko, N.D. Browning, C. Wang, J. Liu, Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys, Adv. Mater. 27(2015) 6598-6605.
    J. Niu, Z. Zhang, D. Aurbach, Alloy anode materials for rechargeable Mg ion batteries, Adv. Energy Mater. 10(2020) 2000697.
    W. Wang, L. Liu, P.-F. Wang, T.-T. Zuo, Y.-X. Yin, N. Wu, J.-M. Zhou, Y. Wei, Y.-G. Guo, A novel bismuth-based anode material with a stable alloying process by the space confinement of an in situ conversion reaction for a rechargeable magnesium ion battery, Chem. Commun. 54(2018) 1714-1717.
    O. Malyi, V.V. Kulish, T.L. Tan, S. Manzhos, A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets, Nano Energy 2(2013) 1149-1157.
    O.I. Malyi, T.L. Tan, S. Manzhos, In search of high performance anode materials for Mg batteries:computational studies of Mg in Ge, Si, and Sn, J. Power Sources 233(2013) 341-345.
    S. Banerjee, S.K. Pati, Anodic performance of black phosphorus in magnesium-ion batteries:the significance of Mg-P bond-synergy, Chem. Commun. 52(2016) 8381-8384.
    F. Legrain, S. Manzhos, A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium:competition between interstitial and substitutional sites, J. Chem. Phys. 146(2017) 034706.
    M. Wang, J.A. Yuwono, V. Vasudevan, N. Birbilis, N.V. Medhekar, Atomistic mechanisms of Mg insertion reactions in group XIV anodes for Mg-ion batteries, ACS Appl. Mater. Interfaces 11(2019) 774-783.
    L.T. Ho, Diffusion and p-type conduction of magnesium impurities in germanium, Appl. Phys. Lett. 35(1979) 409-410.
    L.R. Parent, Y. Cheng, P.V. Sushko, Y. Shao, J. Liu, C.M. Wang, N.D. Browning, Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn, Nano Lett. 15(2015) 1177-1182.
    N. Wu, Y.-X. Yin, Y.-G. Guo, Size-dependent electrochemical magnesium storage performance of spinel lithium titanate, Chem. Asian J. 9(2014) 2099-2102.
    F. Legrain, S. Manzhos, Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon:a first-principles study, J. Power Sources 274(2015) 65-70.
    J. Niu, H. Gao, W. Ma, F. Luo, K. Yin, Z. Peng, Z. Zhang, Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries, Energy Stor. Mater. 14(2018) 351-360.
    F. Legrain, O.I. Malyi, S. Manzhos, Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon, Comp. Mater. Sci. 94(2014) 214-217.
    S. Ye, L. Wang, F. Liu, P. Shi, Y. Yu, Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode, eScience 1(2021) 75-82.
    N. Wu, Z.-Z. Yang, H.-R. Yao, Y.-X. Yin, L. Gu, Y.-G. Guo, Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation, Angew. Chem. 127(2015) 5849-5853.
    R.W. Olesinski, G.J. Abbaschian, The Bi-Ge (bismuth-germanium) system, Bull. Alloy Phase Diagrams 7(1986) 535-540.
    T.J. Konno, R. Sinclair, Metal-mediated crystallization of amorphous germanium in germanium-silver layered systems, Philos. Mag. B 71(1995) 179-199.
    Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu, X. Lu, Y. Tong, Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode, Adv. Mater. 28(2016) 9188-9195.
    M. Wihl, M. Cardona, J. Tauc, Raman scattering in amorphous Ge and III-V compounds, J. Non-Cryst. Solids 8(1972) 172-178.
    J.-Y. Shin, D. Samuelis, J. Maier, Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates:emphasis on interfacial storage phenomena, Adv. Funct. Mater. 21(2011) 3464-3472.
    N. Sa, B. Pan, A. Saha-Shah, A.A. Hubaud, J.T. Vaughey, L.A. Baker, C. Liao, A.K. Burrell, Role of chloride for a simple, non-grignard Mg electrolyte in ether-based solvents, ACS Appl. Mater. Interfaces 8(2016) 16002-16008.
    T. Gao, S. Hou, K. Huynh, F. Wang, N. Eidson, X. Fan, F. Han, C. Luo, M. Mao, X. Li, C. Wang, Existence of solid electrolyte interphase in Mg batteries:Mg/S chemistry as an example, ACS Appl. Mater. Interfaces 10(2018) 14767-14776.
    S.C. Jung, Y.-K. Han, Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode, J. Phys. Chem. C 122(2018) 17643-17649.
  • Funds:

    The authors acknowledge the support by National Natural Science Foundation of China (51871133), Taishan Scholar Foundation of Shandong Province, the Key Research and Development Program of Shandong Province (2021ZLGX01), and the program of Jinan Science and Technology Bureau (2019GXRC001).

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (54) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return