Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wang Ke, Liu Dongyu, Liu Limin, Liu Jia, Hu XiaoFei, Li Ping, Li Mingtao, Vasenko Andrey S., Xiao Chunhui, Ding Shujiang. Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction[J]. eScience, 2022, 2(5): 518-528. doi: 10.1016/j.esci.2022.08.002
Citation: Wang Ke, Liu Dongyu, Liu Limin, Liu Jia, Hu XiaoFei, Li Ping, Li Mingtao, Vasenko Andrey S., Xiao Chunhui, Ding Shujiang. Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction[J]. eScience, 2022, 2(5): 518-528. doi: 10.1016/j.esci.2022.08.002

Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction

doi: 10.1016/j.esci.2022.08.002
More Information
  • Corresponding author: E-mail address: chunhuixiao@xjtu.edu.cn (C. Xiao)
  • Received Date: 2022-04-15
  • Revised Date: 2022-07-29
  • Accepted Date: 2022-08-11
  • Available Online: 2022-08-24
  • Oxygen vacancies in metal oxides can serve as electron trap centers to capture CO2 and lower energy barriers for the electrochemical CO2 reduction reaction (CO2RR). Under aqueous electrolytes, however, such charge-enriched active sites can be occupied by adsorbed hydrogen (H*) and lose their effectiveness for the CO2RR. Here, we develop an efficient catalyst consisting of Cu-doped, defect-rich ZnO (Cu–ZnO) for the CO2RR, which exhibits enhanced CO Faradaic efficiency and current density compared to pristine ZnO. The introduced Cu dopants simultaneously stabilize neighboring oxygen vacancies and modulate their local electronic structure, achieving inhibition of hydrogen evolution and acceleration of the CO2RR. In a flow cell test, a current density of more than 45 ​mA ​cm−2 and a CO Faradaic efficiency of > 80% is obtained for a Cu–ZnO electrocatalyst in the wide potential range of −0.76 ​V to −1.06 ​V vs. Reversible Hydrogen Electrode (RHE). This work opens up great opportunities for dopant-modulated metal oxide catalysts for the CO2RR.
  • ● A low-valence Cu-doping strategy is proposed to tune the local electronic structure of oxygen vacancies in ZnO.
    ● The Cu-doped and defect-rich ZnO exhibits enhanced CO Faradaic efficiency and current density compared to pristine ZnO.
    ● The tuned local electronic structure of oxygen vacancies can weaken the adsorption of H* and optimize the affinity for CO*.
    C.H. Xiao proposed the concept. D.Y. Liu, M.T. Li, and Andrey S. Vasenko performed the density functional theory calculations. K. Wang, J. Liu, and P. Li performed the experiments. K. Wang, D.Y. Liu, L.M. Liu, X.F. Hu, and S.J. Ding co-wrote the manuscript. All authors participated in data analysis and manuscript discussion.
    Author contributions
    Declaration of competing interest
    The authors declare no competing financial interests.
    1 These authors contributed equally to this work.
  • loading
  • eScience-2-5-518.docx
  • [1]
    D.H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F. Li, T. Agapie, J.C. Peters, O. Shekhah, M. Eddaoudi, E.H. Sargent, Molecular enhancement of heterogeneous CO2 reduction, Nat. Mater. 19 (2020) 266-276. doi: 10.1038/s41563-020-0610-2
    [2]
    J.D. Yi, D.H. Si, R. Xie, Q. Yin, M.D. Zhang, Q. Wu, G.L. Chai, Y.B. Huang, R Cao, Conductive two-dimensional phthalocyanine-based Metal-organic framework nanosheets for efficient electroreduction of CO2, Angew. Chem. Int. Ed. 60 (2021) 17108-17114. doi: 10.1002/anie.202104564
    [3]
    D.L. Meng, M.D. Zhang, D.H. Si, M.J. Mao, Y. Hou, Y.B. Huang, R. Cao, Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts, Angew. Chem. Int. Ed. 60 (2021) 25485-25492. doi: 10.1002/anie.202111136
    [4]
    J. Yi, Q. Li, S. Chi, Y. Huang, R Cao, Boron-doped covalent triazine framework for efficient CO2 electroreduction, Chem. Res. Chin. Univ. 38 (2022) 141-146. doi: 10.1007/s40242-021-1384-z
    [5]
    H. Guo, D.H. Si, H.J. Zhu, Q.X. Li, Y.B. Huang, R. Cao, Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities, eScience 2 (2022) 295-303. doi: 10.1016/j.esci.2022.03.007
    [6]
    M.D. Zhang, J. D Yi, Y.B. Huang, R Cao, Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2, Chin. J. Struct. Chem. 40 (2021) 1213-1222.
    [7]
    K. Jiang, H. Wang, W.B. Cai, H. Wang, Electrochemical tuning of metal oxide for highly selective CO2 reduction, ACS Nano 11 (2017) 6451-6458. doi: 10.1021/acsnano.7b03029
    [8]
    J. Li, A. Zitolo, F.A. Garces-Pineda, T. Asset, M. Kodali, P. Tang, J. Arbiol, J.R. Galan-Mascaros, P. Atanassov, I.V. Zenyuk, M.T. Sougrati, F. Jaouen, Metal oxide clusters on nitrogen-doped carbon are highly selective for CO2 electroreduction to CO, ACS Catal. 11 (2021) 10028-10042. doi: 10.1021/acscatal.1c01702
    [9]
    J. Wang, G. Wang, J. Zhang, Y. Wang, H. Wu, X. Zheng, J. Ding, X. Han, Y. Deng, W. Hu, Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping, Angew. Chem. Int. Ed. 60 (2021) 7602-7606. doi: 10.1002/anie.202016022
    [10]
    J. Zhang, R. Yin, Q. Shao, T. Zhu, X. Huang, Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction, Angew. Chem. Int. Ed. 58 (2019) 5609-5613. doi: 10.1002/anie.201900167
    [11]
    Y.X. Duan, Y.T. Zhou, Z. Yu, D.X. Liu, Z. Wen, J.M. Yan, Q. Jiang, Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx, Angew. Chem. Int. Ed. 60 (2021) 8798-8802. doi: 10.1002/anie.202015713
    [12]
    J. Zhang, W. Cai, F.X. Hu, H. Yang, B. Liu, Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction, Chem. Sci. 12 (2021) 6800-6819. doi: 10.1039/D1SC01375K
    [13]
    F. Meng, C. Dai, Z. Liu, S. Luo, J. Ge, Y. Duan, G. Chen, C. Wei, R.R. Chen, J. Wang. D. Mandler, Z.J. Xu, Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides, eScience 2 (2022), 87-94. doi: 10.1016/j.esci.2022.02.001
    [14]
    S. Gao, Z. Sun, W. Liu, X. Jiao, X. Zu, Q. Hu, Y. Sun, T. Yao, W. Zhang, S. Wei, Y. Xie, Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction, Nat. Commun. 8 (2017) 14503. doi: 10.1038/ncomms14503
    [15]
    L. Li, Z.J. Zhao, C. Hu, P. Yang, X. Yuan, Y. Wang, L. Zhang, L. Moskaleva, J. Gong, Tuning oxygen vacancies of oxides to promote electrocatalytic reduction of carbon dioxide, ACS Energy Lett. 5 (2020) 552-558. doi: 10.1021/acsenergylett.9b02749
    [16]
    Z. Geng, X. Kong, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang, J. Zeng, Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO, Angew. Chem. Int. Ed. 57 (2018) 6054-6059. doi: 10.1002/anie.201711255
    [17]
    C. Peng, G. Luo, J. Zhang, M. Chen, Z. Wang, T.K. Sham, L. Zhang, Y. Li, G. Zheng, Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol, Nat. Commun. 12 (2021) 1580. doi: 10.1038/s41467-021-21901-1
    [18]
    J. Swaminathan, R. Subbiah, V. Singaram, Defect-rich metallic titania (TiO1.23)-An efficient hydrogen evolution catalyst for electrochemical water splitting, ACS Catal. 6 (2016) 2222-2229. doi: 10.1021/acscatal.5b02614
    [19]
    T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W.B. Hu, X.W. Du, K. Davey, S.Z. Qiao, Well-dispersed nickel-and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction, Adv. Mater. 31 (2019) 1807771. doi: 10.1002/adma.201807771
    [20]
    S. Zhao, D. Kang, Y. Liu, Y. Wen, X. Xie, H. Yi, X. Tang, Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO2 nanorods with improved activity for carbonyl sulfide hydrolysis, ACS Catal. 10 (2020) 11739-11750. doi: 10.1021/acscatal.0c02832
    [21]
    J. Buckeridge, C.R.A. Catlow, M.R. Farrow, A.J. Logsdail, D.O. Scanlon, T.W. Keal, P. Sherwood, S.M. Woodley, A.A. Sokol, A. Walsh, Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides, Phys. Rev. Mater. 2 (2018) 54604. doi: 10.1103/PhysRevMaterials.2.054604
    [22]
    Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm, Adv. Mater. 31 (2019) 1806482. doi: 10.1002/adma.201806482
    [23]
    N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G. Zheng, Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation, Nat. Commun. 10 (2019) 2877. doi: 10.1038/s41467-019-10888-5
    [24]
    Y. Bo, H. Wang, Y. Lin, T. Yang, R. Ye, Y. Li, C. Hu, P. Du, Y. Hu, Z. Liu, R. Long, C. Gao, B. Ye, L. Song, X. Wu, Y. Xiong, Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant, Angew. Chem. Int. Ed. 60 (2021) 16085-16092. doi: 10.1002/anie.202104001
    [25]
    X. Zu, Y. Zhao, X. Li, R. Chen, W. Shao, Z. Wang, J. Hu, J. Zhu, Y. Pan, Y. Sun, Y. Xie, Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets, Angew. Chem. Int. Ed. 60 (2021) 13840-13846. doi: 10.1002/anie.202101894
    [26]
    J. Wang, J. Liu, B. Zhang, F. Cheng, Y. Ruan, X. Ji, K. Xu, C. Chen, L. Miao, J. Jiang, Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping, Nano Energy 53 (2018) 144-151. doi: 10.1016/j.nanoen.2018.08.022
    [27]
    G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558-561. doi: 10.1103/PhysRevB.47.558
    [28]
    G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251-14269. doi: 10.1103/PhysRevB.49.14251
    [29]
    G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50. doi: 10.1016/0927-0256(96)00008-0
    [30]
    G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [31]
    P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979. doi: 10.1103/PhysRevB.50.17953
    [32]
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.
    [33]
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [34]
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B 57 (1998) 1505-1509. doi: 10.1103/PhysRevB.57.1505
    [35]
    A.K. Mishra, A. Roldan, N.H. de Leeuw, CuO Surfaces and CO2 activation: a dispersion-corrected DFT+U study, J. Phys. Chem. C 120 (2016) 2198-2214.
    [36]
    B. Walls, A.A. Mazilkin, B.O. Mukhamedov, A. Ionov, I.A. Smirnova, A.V. Ponomareva, K. Fleischer, N.A. Kozlovskaya, D.A. Shulyatev, I.A. Abrikosov, I.V. Shvets, S.I. Bozhko, Nanodomain structure of single crystalline nickel oxide, Sci. Rep. 11 (2021) 3496. doi: 10.1038/s41598-021-82070-1
    [37]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (2010) 154104. doi: 10.1063/1.3382344
    [38]
    S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32 (2011) 1456-1465. doi: 10.1002/jcc.21759
    [39]
    V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267 (2021) 108033. doi: 10.1016/j.cpc.2021.108033
    [40]
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272-1276. doi: 10.1107/S0021889811038970
    [41]
    J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. 105 (1996) 9982-9985. doi: 10.1063/1.472933
    [42]
    M. Gerosa, C.E. Bottani, L. Caramella, G. Onida, C. Di Valentin, G. Pacchioni, Electronic structure and phase stability of oxide semiconductors: performance of dielectric-dependent hybrid functional DFT, benchmarked against GW band structure calculations and experiments, Phys. Rev. B 91 (2015) 155201. doi: 10.1103/PhysRevB.91.155201
    [43]
    A.J. Medford, J. Sehested, J. Rossmeisl, I. Chorkendorff, F. Studt, J.K. Noerskov, P.G. Moses, Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0001), J. Catal. 309 (2014) 397-407. doi: 10.1016/j.jcat.2013.10.015
    [44]
    S.R. Kelly, X. Shi, S. Back, L. Vallez, S.Y. Park, S. Siahrostami, X. Zheng, J.K. Noerskov, ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide, ACS Catal. 9 (2019) 4593-4599. doi: 10.1021/acscatal.8b04873
    [45]
    S.H. Yoo, M. Todorova, D. Wickramaratne, L. Weston, C.G.V. d. Walle, J. Neugebauer, Finite-size correction for slab supercell calculations of materials with spontaneous polarization, NPJ Comput. Mater. 7 (2021) 58. doi: 10.1038/s41524-021-00529-1
    [46]
    A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Noerskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy Environ. Sci. 3 (2010) 1311-1315. doi: 10.1039/c0ee00071j
    [47]
    J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram, K.P. Kuhl, C. Hahn, J.K. Noerskov, T.F. Jaramillo, Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes, ACS Catal. 7 (2017) 4822-4827. doi: 10.1021/acscatal.7b00687
    [48]
    F. Oba, A. Togo, I. Tanaka, J. Paier, G. Kresse, Defect energetics in ZnO: a hybrid Hartree-Fock density functional study, Phys. Rev. B 77 (2008) 245202. doi: 10.1103/PhysRevB.77.245202
    [49]
    A. Janotti, C.G. Van de Walle, Oxygen vacancies in ZnO, Appl. Phys. Lett. 87 (2005) 122102. doi: 10.1063/1.2053360
    [50]
    J. Meng, J. Li, J. Liu, X. Zhang, G. Jiang, L. Ma, Z.Y. Hu, S. Xi, Y. Zhao, M. Yan, P. Wang, X. Liu, Q. Li, J.Z. Liu, T. Wu, L. Mai, Universal approach to fabricating graphene-supported single-atom catalysts from doped ZnO solid solutions, ACS Cent. Sci. 6 (2020) 1431-1440. doi: 10.1021/acscentsci.0c00458
    [51]
    Y.H. Lu, W.H. Lin, C.Y. Yang, Y.H. Chiu, Y.C. Pu, M.H. Lee, Y.C. Tseng, Y.J. Hsu, A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities, Nanoscale 6 (2014) 8796-8803. doi: 10.1039/C4NR01607F
    [52]
    Y. Jin, Q. Cui, G. Wen, Q. Wang, J. Hao, S. Wang, J. Zhang, XPS and Raman scattering studies of room temperature ferromagnetic ZnO: Cu, J. Phys. D 42 (2009) 215007. doi: 10.1088/0022-3727/42/21/215007
    [53]
    A. Zhang, Y. Liang, H. Li, X. Zhao, Y. Chen, B. Zhang, W. Zhu, J. Zeng, Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction, Nano Lett. 19 (2019) 6547-6553. doi: 10.1021/acs.nanolett.9b02782
    [54]
    M. Li, X. Wang, F. Li, L. Zheng, J. Xu, J. Yu, A bifunctional photo-assisted Li-O(2) battery based on a hierarchical heterostructured cathode, Adv. Mater. 32 (2020) 1907098. doi: 10.1002/adma.201907098
    [55]
    K. Jiang, Y. Huang, G. Zeng, F.M. Toma, W.A. Goddard, A.T. Bell, Effects of surface roughness on the electrochemical reduction of CO2 over Cu, ACS Energy Lett. 5 (2020) 1206-1214. doi: 10.1021/acsenergylett.0c00482
    [56]
    M. Moradi, F. Hasanvandian, A.A. Isari, F. Hayati, B. Kakavandi, S.R. Setayesh, CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin, Appl. Catal. B Environ. 285 (2021) 119838. doi: 10.1016/j.apcatb.2020.119838
    [57]
    M. Lei, N. Wang, L. Zhu, Q. Zhou, G. Nie, H. Tang, Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: a mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper, Appl. Catal. B Environ. 182 (2016) 414-423. doi: 10.1016/j.apcatb.2015.09.031
    [58]
    W.D. Oh, Z. Wong, X. Chen, K.Y.A. Lin, A. Veksha, G. Lisak, C. He, T.T. Lim, Enhanced activation of peroxydisulfate by CuO decorated on hexagonal boron nitride for bisphenol A removal, Chem. Eng. J. 393 (2020) 124714. doi: 10.1016/j.cej.2020.124714
    [59]
    Y. Tong, H. Guo, D. Liu, X. Yan, P. Su, J. Liang, S. Zhou, J. Liu, G.Q. Lu, S.X. Dou, Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction, Angew. Chem. Int. Ed. 59 (2020) 7356-7361. doi: 10.1002/anie.202002029
    [60]
    X. Xu, L. Li, J. Huang, H. Jin, X. Fang, W. Liu, N. Zhang, H. Wang, X. Wang, Engineering Ni3+ cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation, ACS Catal. 8 (2018) 8033-8045. doi: 10.1021/acscatal.8b01692
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (83) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return