Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wang Kuan, Zhang Zhengfeng, Cheng Sulan, Han Xiao, Fu Junjie, Sui Manling, Yan Pengfei. Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery[J]. eScience, 2022, 2(5): 529-536. doi: 10.1016/j.esci.2022.08.003
Citation: Wang Kuan, Zhang Zhengfeng, Cheng Sulan, Han Xiao, Fu Junjie, Sui Manling, Yan Pengfei. Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery[J]. eScience, 2022, 2(5): 529-536. doi: 10.1016/j.esci.2022.08.003

Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery

doi: 10.1016/j.esci.2022.08.003
More Information
  • Corresponding author: E-mail address: mlsui@bjut.edu.cn (M. Sui); E-mail address: pfyan@bjut.edu.cn (P. Yan)
  • Received Date: 2022-04-28
  • Revised Date: 2022-07-21
  • Accepted Date: 2022-08-21
  • Available Online: 2022-08-26
  • Electrode interfacial degradations are the key challenges for high-performance rechargeable batteries, usually mitigated through surface modification/coating strategies. Herein, we report a novel mechanism to enhance the surface stability of P2 layered cathodes by introducing a high density of dopant-enriched precipitates. Based on microscopic analysis, we show that forming a high density of precipitates at the grain surface can effectively suppress surface cracking and corrosion, which not only improves the surface/interface stability but also effectively suppresses the intergranular cracking issue. Increasing the doping level can lead to a greater density of precipitates at the surface region, which results in higher surface stability and increased cycling stability of the P2 layered cathode for a sodium-ion battery. We further reveal that prolonged cycling can induce the formation of a precipitate-free surface region due to the loss of Zn dopant and Na. Our in-depth microanalysis reveals cycling-induced dynamic structural evolution of the P2 layered cathodes, highlighting that dopant segregation-induced precipitation is a new approach to achieving high interfacial stability.
  • ● Stabilizing the grain surface can alleviate intergranular cracking.
    ● Superior cycling performance is achieved by improving the interfacial stability.
    ● Prolonged cycling leads to a surface de-precipitation process.
    ● Dopant-enriched precipitates can effectively suppress surface cracking and corrosion.
    Author contributions
    K. W., P. Y., and M. S. conceived the research plan. P. Y. and M. S. supervised the research. K. W. and S. C. prepared samples, synthesized the cathode materials, and performed battery tests. K. W., P. Y., and M. S. conducted TEM and SEM analyses. K. W. and Z. Z. prepared TEM samples using FIB. J. F. conducted XRD tests. All authors discussed the results and commented on the manuscript.
    Declaration of competing interest
    The authors declare no competing financial interests.
    Appendix A. Supplementary data
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.esci.2022.08.003.
  • loading
  • eScience-2-5-529.docx
  • [1]
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636. doi: 10.1021/cr500192f
    [2]
    J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529. doi: 10.1039/C6CS00776G
    [3]
    C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater. 3 (2018) 18013. doi: 10.1038/natrevmats.2018.13
    [4]
    R.J. Clément, P.G. Bruce, C.P. Grey, Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, J. Electrochem. Soc. 162 (2015) A2589. doi: 10.1149/2.0201514jes
    [5]
    C. Zhao, Y. Lu, L. Chen, Y. -S. Hu, Ni-based cathode materials for Na-ion batteries, Nano Res. 12 (2019) 2018. doi: 10.1007/s12274-019-2451-3
    [6]
    S. Guo, J. Yi, Y. Sun, H. Zhou, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci. 9 (2016) 2978–3006. doi: 10.1039/C6EE01807F
    [7]
    W. -J. Li, C. Han, W. Wang, F. Gebert, S. -L. Chou, H. -K. Liu, X. Zhang, S. -X. Dou, Commercial prospects of existing cathode materials for sodium ion storage, Adv. Energy Mater. 7 (2017) 1700274. doi: 10.1002/aenm.201700274
    [8]
    Y. You, A. Manthiram, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1701785. doi: 10.1002/aenm.201701785
    [9]
    L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo, C. Tian, C. -J. Sun, X. -W. Du, D. Nordlund, H.L. Xin, F. Lin, Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials, Adv. Energy Mater. 8 (2018) 1801975. doi: 10.1002/aenm.201801975
    [10]
    Y. Xie, H. Wang, G. Xu, J. Wang, H. Sheng, Z. Chen, Y. Ren, C. -J. Sun, J. Wen, J. Wang, D.J. Miller, J. Lu, K. Amine, Z. -F. Ma, Operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation, Adv. Energy Mater. 6 (2016) 1601306. doi: 10.1002/aenm.201601306
    [11]
    K. Wang, P. Yan, M. Sui, Phase transition induced cracking plaguing layered cathode for sodium-ion battery, Nano Energy 54 (2018) 148. doi: 10.1016/j.nanoen.2018.09.073
    [12]
    R. Xu, L.S. de Vasconcelos, J. Shi, J. Li, K. Zhao, Disintegration of meatball electrodes for LiNixMnyCozO2 cathode materials, Exp. Mech. 58 (2017) 549.
    [13]
    G.G. Amatucci, J.M. Tarascon, L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics 83 (1996) 167–173. doi: 10.1016/0167-2738(95)00231-6
    [14]
    J. Zheng, M. Gu, J. Xiao, P. Zuo, C. Wang, J.G. Zhang, Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process, Nano Lett. 13 (2013) 3824–3830. doi: 10.1021/nl401849t
    [15]
    A. Boulineau, L. Simonin, J.F. Colin, C. Bourbon, S. Patoux, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett. 13 (2013) 3857–3863. doi: 10.1021/nl4019275
    [16]
    Z. Xu, M.M. Rahman, L. Mu, Y. Liu, F. Lin, Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries, J. Mater. Chem. A 6 (2018) 21859. doi: 10.1039/C8TA06875E
    [17]
    K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303–4418. doi: 10.1021/cr030203g
    [18]
    J. Alvarado, C. Ma, S. Wang, K. Nguyen, K. Moses, Y.S. Meng, Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition, ACS Appl. Mater. Interfaces 9 (2017) 26518–26530. doi: 10.1021/acsami.7b05326
    [19]
    Y. Liu, X. Fang, A. Zhang, C. Shen, Q. Liu, H.A. Enaya, C. Zhou, Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification, Nano Energy 27 (2016) 27–34. doi: 10.1016/j.nanoen.2016.06.026
    [20]
    P. -F. Wang, Y. You, Y. -X. Yin, Y. -S. Wang, L. -J. Wan, L. Gu, Y. -G. Guo, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem. Int. Ed. 55 (2016) 7445–7449. doi: 10.1002/anie.201602202
    [21]
    J. Xu, D.H. Lee, R.J. Clément, X. Yu, M. Leskes, A.J. Pell, G. Pintacuda, X. -Q. Yang, C.P. Grey, Y.S. Meng, Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1yz]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries, Chem. Mater. 26 (2014) 1260–1269. doi: 10.1021/cm403855t
    [22]
    X. Wu, J. Guo, D. Wang, G. Zhong, M.J. McDonald, Y. Yang, P2-type Na0.66Ni0.33xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries, J. Power Sources 281 (2015) 18–26. doi: 10.1016/j.jpowsour.2014.12.083
    [23]
    L. Wang, Y. Sun, L. Hu, J. Piao, J. Guo, A. Manthiram, J. Ma, A. -M. Cao, Copper-substituted Na0.67Ni0.3-xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition, J. Mater. Chem. A 5 (2017) 8752–8761. doi: 10.1039/C7TA00880E
    [24]
    K. Zhang, D. Kim, Z. Hu, M. Park, G. Noh, Y. Yang, J. Zhang, V.W. Lau, S.L. Chou, M. Cho, S.Y. Choi, Y.M. Kang, Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries, Nat. Commun. 10 (2019) 5203. doi: 10.1038/s41467-018-07646-4
    [25]
    W. Zuo, R. Liu, G. Ortiz, S. Rubio, T. Chyrka, P. Lavela, S. Zheng, J. Tirado, D. Wang, Y. Yang, Sodium storage behavior of Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes, J. Power Sources 400 (2018) 317–324. doi: 10.1016/j.jpowsour.2018.08.037
    [26]
    X. Wu, G.L. Xu, G. Zhong, Z. Gong, M.J. McDonald, S. Zheng, R. Fu, Z. Chen, K. Amine, Y. Yang, Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 22227–22237. doi: 10.1021/acsami.6b06701
    [27]
    K. Wang, P. Yan, Z. Wang, J. Fu, Z. Zhang, X. Ke, M. Sui, Advancing layered cathode material's cycling stability from uniform doping to non-uniform doping, J. Mater. Chem. A 8 (2020) 16690–16697. doi: 10.1039/D0TA05262K
    [28]
    K. Wang, H. Wan, P. Yan, X. Chen, J. Fu, Z. Liu, H. Deng, F. Gao, M. Sui, Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries, Adv. Mater. 31 (2019) 1904816. doi: 10.1002/adma.201904816
    [29]
    P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, J. -G. Zhang, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy 3 (2018) 600–605. doi: 10.1038/s41560-018-0191-3
    [30]
    H. Liu, M. Wolf, K. Karki, Y.S. Yu, E.A. Stach, J. Cabana, K.W. Chapman, P.J. Chupas, Intergranular cracking as a major cause of long-term capacity fading of layered cathodes, Nano Lett. 17 (2017) 3452. doi: 10.1021/acs.nanolett.7b00379
    [31]
    D.J. Miller, C. Proff, J.G. Wen, D.P. Abraham, J. Bareño, Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy, Adv. Energy Mater. 3 (2013) 1098. doi: 10.1002/aenm.201300015
    [32]
    A. Konarov, J.H. Jo, J.U. Choi, Z. Bakenov, H. Yashiro, J. Kim, S. -T. Myung, Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries, Nano Energy 59 (2019) 197–206. doi: 10.1016/j.nanoen.2019.02.042
    [33]
    Y. Wang, L. Wang, H. Zhu, J. Chu, Y. Fang, L. Wu, L. Huang, Y. Ren, C.J. Sun, Q. Liu, X. Ai, H. Yang, Y. Cao, Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage, Adv. Funct. Mater. 30 (2020) 1910327. doi: 10.1002/adfm.201910327
    [34]
    X. Bai, M. Sathiya, B. Mendoza-Sánchez, A. Iadecola, J. Vergnet, R. Dedryvère, M. Saubanere, A.M. Abakumov, P. Rozier, J. -M. Tarascon, Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1-yZnyO2 (0 < y < 0.23), Adv. Energy Mater. 8 (2018) 1802379. doi: 10.1002/aenm.201802379
    [35]
    P. Yan, J. Zheng, Z. -K. Tang, A. Devaraj, G. Chen, K. Amine, J. -G. Zhang, L. -M. Liu, C. Wang, Injection of oxygen vacancies in the bulk lattice of layered cathodes, Nat. Nanotechnol. 14 (2019) 602–608. doi: 10.1038/s41565-019-0428-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (80) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return