Citation: | Wang Kuan, Zhang Zhengfeng, Cheng Sulan, Han Xiao, Fu Junjie, Sui Manling, Yan Pengfei. Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery[J]. eScience, 2022, 2(5): 529-536. doi: 10.1016/j.esci.2022.08.003 |
![]() |
![]() |
[1] |
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636. doi: 10.1021/cr500192f
|
[2] |
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529. doi: 10.1039/C6CS00776G
|
[3] |
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater. 3 (2018) 18013. doi: 10.1038/natrevmats.2018.13
|
[4] |
R.J. Clément, P.G. Bruce, C.P. Grey, Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, J. Electrochem. Soc. 162 (2015) A2589. doi: 10.1149/2.0201514jes
|
[5] |
C. Zhao, Y. Lu, L. Chen, Y. -S. Hu, Ni-based cathode materials for Na-ion batteries, Nano Res. 12 (2019) 2018. doi: 10.1007/s12274-019-2451-3
|
[6] |
S. Guo, J. Yi, Y. Sun, H. Zhou, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci. 9 (2016) 2978–3006. doi: 10.1039/C6EE01807F
|
[7] |
W. -J. Li, C. Han, W. Wang, F. Gebert, S. -L. Chou, H. -K. Liu, X. Zhang, S. -X. Dou, Commercial prospects of existing cathode materials for sodium ion storage, Adv. Energy Mater. 7 (2017) 1700274. doi: 10.1002/aenm.201700274
|
[8] |
Y. You, A. Manthiram, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1701785. doi: 10.1002/aenm.201701785
|
[9] |
L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo, C. Tian, C. -J. Sun, X. -W. Du, D. Nordlund, H.L. Xin, F. Lin, Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials, Adv. Energy Mater. 8 (2018) 1801975. doi: 10.1002/aenm.201801975
|
[10] |
Y. Xie, H. Wang, G. Xu, J. Wang, H. Sheng, Z. Chen, Y. Ren, C. -J. Sun, J. Wen, J. Wang, D.J. Miller, J. Lu, K. Amine, Z. -F. Ma, Operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation, Adv. Energy Mater. 6 (2016) 1601306. doi: 10.1002/aenm.201601306
|
[11] |
K. Wang, P. Yan, M. Sui, Phase transition induced cracking plaguing layered cathode for sodium-ion battery, Nano Energy 54 (2018) 148. doi: 10.1016/j.nanoen.2018.09.073
|
[12] |
R. Xu, L.S. de Vasconcelos, J. Shi, J. Li, K. Zhao, Disintegration of meatball electrodes for LiNixMnyCozO2 cathode materials, Exp. Mech. 58 (2017) 549.
|
[13] |
G.G. Amatucci, J.M. Tarascon, L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics 83 (1996) 167–173. doi: 10.1016/0167-2738(95)00231-6
|
[14] |
J. Zheng, M. Gu, J. Xiao, P. Zuo, C. Wang, J.G. Zhang, Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process, Nano Lett. 13 (2013) 3824–3830. doi: 10.1021/nl401849t
|
[15] |
A. Boulineau, L. Simonin, J.F. Colin, C. Bourbon, S. Patoux, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett. 13 (2013) 3857–3863. doi: 10.1021/nl4019275
|
[16] |
Z. Xu, M.M. Rahman, L. Mu, Y. Liu, F. Lin, Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries, J. Mater. Chem. A 6 (2018) 21859. doi: 10.1039/C8TA06875E
|
[17] |
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303–4418. doi: 10.1021/cr030203g
|
[18] |
J. Alvarado, C. Ma, S. Wang, K. Nguyen, K. Moses, Y.S. Meng, Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition, ACS Appl. Mater. Interfaces 9 (2017) 26518–26530. doi: 10.1021/acsami.7b05326
|
[19] |
Y. Liu, X. Fang, A. Zhang, C. Shen, Q. Liu, H.A. Enaya, C. Zhou, Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification, Nano Energy 27 (2016) 27–34. doi: 10.1016/j.nanoen.2016.06.026
|
[20] |
P. -F. Wang, Y. You, Y. -X. Yin, Y. -S. Wang, L. -J. Wan, L. Gu, Y. -G. Guo, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem. Int. Ed. 55 (2016) 7445–7449. doi: 10.1002/anie.201602202
|
[21] |
J. Xu, D.H. Lee, R.J. Clément, X. Yu, M. Leskes, A.J. Pell, G. Pintacuda, X. -Q. Yang, C.P. Grey, Y.S. Meng, Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries, Chem. Mater. 26 (2014) 1260–1269. doi: 10.1021/cm403855t
|
[22] |
X. Wu, J. Guo, D. Wang, G. Zhong, M.J. McDonald, Y. Yang, P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries, J. Power Sources 281 (2015) 18–26. doi: 10.1016/j.jpowsour.2014.12.083
|
[23] |
L. Wang, Y. Sun, L. Hu, J. Piao, J. Guo, A. Manthiram, J. Ma, A. -M. Cao, Copper-substituted Na0.67Ni0.3-xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition, J. Mater. Chem. A 5 (2017) 8752–8761. doi: 10.1039/C7TA00880E
|
[24] |
K. Zhang, D. Kim, Z. Hu, M. Park, G. Noh, Y. Yang, J. Zhang, V.W. Lau, S.L. Chou, M. Cho, S.Y. Choi, Y.M. Kang, Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries, Nat. Commun. 10 (2019) 5203. doi: 10.1038/s41467-018-07646-4
|
[25] |
W. Zuo, R. Liu, G. Ortiz, S. Rubio, T. Chyrka, P. Lavela, S. Zheng, J. Tirado, D. Wang, Y. Yang, Sodium storage behavior of Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes, J. Power Sources 400 (2018) 317–324. doi: 10.1016/j.jpowsour.2018.08.037
|
[26] |
X. Wu, G.L. Xu, G. Zhong, Z. Gong, M.J. McDonald, S. Zheng, R. Fu, Z. Chen, K. Amine, Y. Yang, Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 22227–22237. doi: 10.1021/acsami.6b06701
|
[27] |
K. Wang, P. Yan, Z. Wang, J. Fu, Z. Zhang, X. Ke, M. Sui, Advancing layered cathode material's cycling stability from uniform doping to non-uniform doping, J. Mater. Chem. A 8 (2020) 16690–16697. doi: 10.1039/D0TA05262K
|
[28] |
K. Wang, H. Wan, P. Yan, X. Chen, J. Fu, Z. Liu, H. Deng, F. Gao, M. Sui, Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries, Adv. Mater. 31 (2019) 1904816. doi: 10.1002/adma.201904816
|
[29] |
P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, J. -G. Zhang, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy 3 (2018) 600–605. doi: 10.1038/s41560-018-0191-3
|
[30] |
H. Liu, M. Wolf, K. Karki, Y.S. Yu, E.A. Stach, J. Cabana, K.W. Chapman, P.J. Chupas, Intergranular cracking as a major cause of long-term capacity fading of layered cathodes, Nano Lett. 17 (2017) 3452. doi: 10.1021/acs.nanolett.7b00379
|
[31] |
D.J. Miller, C. Proff, J.G. Wen, D.P. Abraham, J. Bareño, Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy, Adv. Energy Mater. 3 (2013) 1098. doi: 10.1002/aenm.201300015
|
[32] |
A. Konarov, J.H. Jo, J.U. Choi, Z. Bakenov, H. Yashiro, J. Kim, S. -T. Myung, Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries, Nano Energy 59 (2019) 197–206. doi: 10.1016/j.nanoen.2019.02.042
|
[33] |
Y. Wang, L. Wang, H. Zhu, J. Chu, Y. Fang, L. Wu, L. Huang, Y. Ren, C.J. Sun, Q. Liu, X. Ai, H. Yang, Y. Cao, Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage, Adv. Funct. Mater. 30 (2020) 1910327. doi: 10.1002/adfm.201910327
|
[34] |
X. Bai, M. Sathiya, B. Mendoza-Sánchez, A. Iadecola, J. Vergnet, R. Dedryvère, M. Saubanere, A.M. Abakumov, P. Rozier, J. -M. Tarascon, Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1-yZnyO2 (0 < y < 0.23), Adv. Energy Mater. 8 (2018) 1802379. doi: 10.1002/aenm.201802379
|
[35] |
P. Yan, J. Zheng, Z. -K. Tang, A. Devaraj, G. Chen, K. Amine, J. -G. Zhang, L. -M. Liu, C. Wang, Injection of oxygen vacancies in the bulk lattice of layered cathodes, Nat. Nanotechnol. 14 (2019) 602–608. doi: 10.1038/s41565-019-0428-8
|