Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Liu Qingqing, Liu Ruiting, He Chaohui, Xia Chenfeng, Guo Wei, Xu Zheng-Long, Xia Bao Yu. Advanced polymer-based electrolytes in zinc–air batteries[J]. eScience, 2022, 2(5): 453-466. doi: 10.1016/j.esci.2022.08.004
Citation: Liu Qingqing, Liu Ruiting, He Chaohui, Xia Chenfeng, Guo Wei, Xu Zheng-Long, Xia Bao Yu. Advanced polymer-based electrolytes in zinc–air batteries[J]. eScience, 2022, 2(5): 453-466. doi: 10.1016/j.esci.2022.08.004

Advanced polymer-based electrolytes in zinc–air batteries

doi: 10.1016/j.esci.2022.08.004
More Information
  • Zinc–air batteries (ZABs) are expected to be some of the most promising power sources for wearable and portable electronic devices and have received widespread research interest. As an ion conductor connecting anodes and cathodes, the electrolyte is critical for the overall performance of ZABs (e.g., energy density, rechargeability, and operating voltage). Compared with liquid electrolytes, polymer-based electrolytes have superior characteristics for ZABs, such as negligible electrolyte leakage, three-phase interface stabilization, and dendrite suppression. In this perspective, we focus on recent progress in polymer-based electrolytes for ZABs. After a brief introduction to ZABs and electrolytes, we emphasize the development of polymer-based electrolytes in terms of their intrinsic properties and interfacial chemistry. Finally, challenges and viable strategies are proposed for polymer-based electrolytes in ZABs. We hope that this work will provide useful guidance to spur the development of high-performance ZABs based on advanced polymer-based electrolytes.
  • ● Current challenges and future perspectives of polymer-based electrolytes in zinc-air batteries are proposed.
    ● Typical design strategies for polymer-based electrolytes are illustrated in terms of the intrinsic property and interfacial chemistry.
    ● Recent progress on polymer-based electrolytes in zinc-air batteries is discussed in this work.
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
  • loading
  • [1]
    Z. Li, R. Gao, M. Feng, Y.P. Deng, D. Xiao, Y. Zheng, Z. Zhao, D. Luo, Y. Liu, Z. Zhang, D. Wang, Q. Li, H. Li, X. Wang, Z. Chen, Modulating metal–organic frameworks as advanced oxygen electrocatalysts, Adv. Energy Mater. 11 (2021) 2003291. doi: 10.1002/aenm.202003291
    [2]
    H. Niu, C. Xia, L. Huang, S. Zaman, T. Maiyalagan, W. Guo, B. You, B.Y. Xia, Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis, Chin. J. Catal. 43 (2022) 1459–1472. doi: 10.1016/S1872-2067(21)63862-7
    [3]
    L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang, B.Y. Xia, Advanced platinumbased oxygen reduction electrocatalysts for fuel cells, Acc. Chem. Res. 54 (2021) 311–322. doi: 10.1021/acs.accounts.0c00488
    [4]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science 355 (2017) eaad4998. doi: 10.1126/science.aad4998
    [5]
    D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 19–29. doi: 10.1038/nchem.2085
    [6]
    P. Pei, K. Wang, Z. Ma, Technologies for extending zinc–air battery's cycle life: a review, Appl. Energy 128 (2014) 315–324. doi: 10.1016/j.apenergy.2014.04.095
    [7]
    C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao, W. Hu, Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries, Nat. Energy 5 (2020) 440–449. doi: 10.1038/s41560-020-0584-y
    [8]
    H.F. Li, L.T. Ma, C.P. Han, Z.F. Wang, Z.X. Liu, Z.J. Tang, C.Y. Zhi, Advanced rechargeable zinc-based batteries: recent progress and future perspectives, Nano Energy 62 (2019) 550–587. doi: 10.1016/j.nanoen.2019.05.059
    [9]
    Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes, Chem. Soc. Rev. 43 (2014) 7746–7786. doi: 10.1039/C3CS60248F
    [10]
    M.S. Balogun, M.H. Yu, Y.C. Huan, C. Li, P.P. Fang, Y. Li, X.H. Lu, Y.X. Tong, Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries, Nano Energy 11 (2015) 348–355. doi: 10.1016/j.nanoen.2014.11.019
    [11]
    M. -S. Balogun, Z. Wu, Y. Luo, W. Qiu, X. Fan, B. Long, M. Huang, P. Liu, Y. Tong, High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries, J. Power Sources 308 (2016) 7–17. doi: 10.1016/j.jpowsour.2016.01.043
    [12]
    A. Huang, Y. Ma, J. Peng, L. Li, S. -l. Chou, S. Ramakrishna, S. Peng, Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience 1 (2021) 141–162. doi: 10.1016/j.esci.2021.11.006
    [13]
    P. Li, H. Kim, J. Ming, H. -G. Jung, I. Belharouak, Y. -K. Sun, Quasi-compensatory effect in emerging anode-free lithium batteries, eScience 1 (2021) 3–12. doi: 10.1016/j.esci.2021.10.002
    [14]
    X. Li, R. Zhao, Y. Fu, A. Manthiram, Nitrate additives for lithium batteries: mechanisms, applications, and prospects, eScience 1 (2021) 108–123. doi: 10.1016/j.esci.2021.12.006
    [15]
    D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao, Z. Zhang, H. Dou, G. Wen, L. Shui, A. Yu, X. Wang, Z. Chen, Electrolyte design for lithium metal anode-based batteries toward extreme temperature application, Adv. Sci. 8 (2021) 2101051. doi: 10.1002/advs.202101051
    [16]
    X. Gou, Z. Hao, Z. Hao, G. Yang, Z. Yang, X. Zhang, Z. Yan, Q. Zhao, J. Chen, In situ surface self-reconstruction strategies in Li-rich Mn-based layered cathodes for energy-dense Li-ion batteries, Adv. Funct. Mater. 32 (2022) 2112088. doi: 10.1002/adfm.202112088
    [17]
    X. Tian, X. Zhao, Y. -Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E.J.M. Hensen, X.W. Lou, B.Y. Xia, Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells, Science 366 (2019) 850–856. doi: 10.1126/science.aaw7493
    [18]
    J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu, B.Y. Xia, Advanced architectures and relatives of air electrodes in Zn-air batteries, Adv. Sci. 5 (2018) 1700691. doi: 10.1002/advs.201700691
    [19]
    C. Xia, Y. Zhou, C. He, A.I. Douka, W. Guo, K. Qi, B.Y. Xia, Recent advances on electrospun nanomaterials for zinc–air batteries, Small Sci. 1 (2021) 2100010. doi: 10.1002/smsc.202100010
    [20]
    P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai, M. Ni, M. Liu, Z. Shao, Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives, Energy Environ. Sci. 10 (2017) 2056–2080. doi: 10.1039/C7EE01913K
    [21]
    Y. Li, H. Dai, Recent advances in zinc-air batteries, Chem. Soc. Rev. 43 (2014) 5257–5275. doi: 10.1039/C4CS00015C
    [22]
    C. Xia, L. Huang, D. Yan, A.I. Douka, W. Guo, K. Qi, B.Y. Xia, Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc–air batteries, Adv. Funct. Mater. 31 (2021) 2105021. doi: 10.1002/adfm.202105021
    [23]
    A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan, H. Liu, M.A. Salam, B.Y. Xia, A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries, Adv. Mater. 32 (2020) 2002170. doi: 10.1002/adma.202002170
    [24]
    D. Du, S. Zhao, Z. Zhu, F. Li, J. Chen, Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zn-air battery, Angew. Chem. Int. Ed. 59 (2020) 18140–18144. doi: 10.1002/anie.202005929
    [25]
    J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler, Z. Chen, Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives, Adv. Mater. 29 (2017) 1604685. doi: 10.1002/adma.201604685
    [26]
    M. Wu, G. Zhang, L. Du, D. Yang, H. Yang, S. Sun, Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc-air batteries: recent advances, challenges, and future perspectives, Small Methods 5 (2021) 2000868. doi: 10.1002/smtd.202000868
    [27]
    J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries, Energy Environ. Sci. 11 (2018) 3075–3095. doi: 10.1039/C8EE01991F
    [28]
    Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong, J. Lu, Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization, ACS Energy Lett. 4 (2019) 2259–2270. doi: 10.1021/acsenergylett.9b01541
    [29]
    X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, T. Ma, Z.Q. Liu, Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc–air batteries, Angew. Chem. Int. Ed. 131 (2019) 13425–13430. doi: 10.1002/ange.201907595
    [30]
    H. Cheng, M. -L. Li, C. -Y. Su, N. Li, Z. -Q. Liu, Cu–Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: a high-efficiency bifunctional oxygen electrode for Zn–air batteries, Adv. Funct. Mater. 27 (2017) 1701833. doi: 10.1002/adfm.201701833
    [31]
    D. Yu, Y. Ma, F. Hu, C.C. Lin, L. Li, H.Y. Chen, X. Han, S. Peng, Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries, Adv. Energy Mater. 11 (2021) 2101242. doi: 10.1002/aenm.202101242
    [32]
    Q. Lu, H. Wu, X. Zheng, Y. Chen, A.L. Rogach, X. Han, Y. Deng, W. Hu, Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co–N–C moiety for enhanced oxygen electrocatalysis in Zn-air batteries, Adv. Sci. 8 (2021) 2101438. doi: 10.1002/advs.202101438
    [33]
    X. Han, N. Li, Y.B. Kang, Q. Dou, P. Xiong, Q. Liu, J.Y. Lee, L. Dai, H.S. Park, Unveiling trifunctional active sites of a heteronanosheet electrocatalyst for integrated cascade battery/electrolyzer systems, ACS Energy Lett. 6 (2021) 2460–2468. doi: 10.1021/acsenergylett.1c00936
    [34]
    X. Han, N. Li, P. Xiong, M.G. Jung, Y. Kang, Q. Dou, Q. Liu, J.Y. Lee, H.S. Park, Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries, InfoMat 3 (2021) 1134–1144. doi: 10.1002/inf2.12226
    [35]
    M. Xu, D.G. Ivey, Z. Xie, W. Qu, Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement, J. Power Sources 283 (2015) 358–371. doi: 10.1016/j.jpowsour.2015.02.114
    [36]
    X. Liu, X. Fan, B. Liu, J. Ding, Y. Deng, X. Han, C. Zhong, W. Hu, Mapping the design of electrolyte materials for electrically rechargeable zinc-air batteries, Adv. Mater. 33 (2021) 2006461. doi: 10.1002/adma.202006461
    [37]
    S. Hosseini, S. Masoudi Soltani, Y. -Y. Li, Current status and technical challenges of electrolytes in zinc–air batteries: an in-depth review, Chem. Eng. J. 408 (2021) 127241. doi: 10.1016/j.cej.2020.127241
    [38]
    D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer 14 (1973) 589.
    [39]
    A.A. Mohamad, Zn/gelled 6 M KOH/O2 zinc–air battery, J. Power Sources 159 (2006) 752–757. doi: 10.1016/j.jpowsour.2005.10.110
    [40]
    R. Othman, W.J. Basirun, A.H. Yahaya, A.K. Arof, Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells, J. Power Sources 103 (2001) 34–41. doi: 10.1016/S0378-7753(01)00823-0
    [41]
    C. -C. Yang, S. -J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery, J. Power Sources 112 (2002) 497–503. doi: 10.1016/S0378-7753(02)00438-X
    [42]
    N. Vassal, E. Salmon, J. -F. Fauvarque, Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO), Electrochim. Acta 45 (2000) 1527–1532. doi: 10.1016/S0013-4686(99)00369-2
    [43]
    C. -C. Yang, S. -J. Lin, S. -T. Hsu, Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells, J. Power Sources 122 (2003) 210–218. doi: 10.1016/S0378-7753(03)00429-4
    [44]
    H. -W. Kim, J. -M. Lim, H. -J. Lee, S. -W. Eom, Y.T. Hong, S. -Y. Lee, Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes, J. Mater. Chem. A 4 (2016) 3711–3720. doi: 10.1039/C5TA09576J
    [45]
    J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Metal-air batteries with high energy density: Li-air versus Zn-air, Adv. Energy Mater. 1 (2011) 34–50. doi: 10.1002/aenm.201000010
    [46]
    G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: a review, J. Membr. Sci. 377 (2011) 1–35. doi: 10.1016/j.memsci.2011.04.043
    [47]
    J.S.B. Wyithe, A. Loeb, Magnification of light from many distant quasars by gravitational lenses, Nature 417 (2002) 923–925. doi: 10.1038/nature00794
    [48]
    R. Ludwig, New insight into the transport mechanism of hydrated hydroxide ions in water, Angew. Chem. Int. Ed. 42 (2003) 258–260. doi: 10.1002/anie.200390097
    [49]
    A. Sumboja, X. Ge, G. Zheng, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst, J. Power Sources 332 (2016) 330–336. doi: 10.1016/j.jpowsour.2016.09.142
    [50]
    L. Li, Y. Fu, A. Manthiram, Imidazole-buffered acidic catholytes for hybrid Li–air batteries with high practical energy density, Electrochem. Commun. 47 (2014) 67–70. doi: 10.1016/j.elecom.2014.07.027
    [51]
    Q. Dou, L. Liu, B. Yang, J. Lang, X. Yan, Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors, Nat. Commun. 8 (2017) 2188. doi: 10.1038/s41467-017-02152-5
    [52]
    W. Xu, C.A. Angell, Solvent-Free electrolytes with aqueous solution–like conductivities, Science 302 (2003) 422–425. doi: 10.1126/science.1090287
    [53]
    B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci. 12 (2019) 3288–3304. doi: 10.1039/C9EE02526J
    [54]
    G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, Y. Meng, Polymer-based solid electrolytes: material selection, design, and application, Adv. Funct. Mater. 31 (2020) 2007598.
    [55]
    S. Zhang, S. Li, Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: a review, eScience 1 (2021) 163–177. doi: 10.1016/j.esci.2021.12.003
    [56]
    E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chem. Soc. Rev. 40 (2011) 2525–2540. doi: 10.1039/c0cs00081g
    [57]
    S. Gao, J. Zhong, G.B. Xue, B. Wang, Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide, J. Membr. Sci. 470 (2014) 316–322. doi: 10.1016/j.memsci.2014.07.044
    [58]
    C.F. Yuan, J. Li, P.F. Han, Y.Q. Lai, Z.A. Zhang, J. Liu, Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework, J. Power Sources 240 (2013) 653–658. doi: 10.1016/j.jpowsour.2013.05.030
    [59]
    C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers, Nano Lett. 12 (2012) 1152–1156. doi: 10.1021/nl202692y
    [60]
    J. Lai, Y. Xing, N. Chen, L. Li, F. Wu, R. Chen, Electrolytes for rechargeable lithium-air batteries, Angew. Chem. Int. Ed. 59 (2020) 2974–2997. doi: 10.1002/anie.201903459
    [61]
    L. Fan, S.Y. Wei, S.Y. Li, Q. Li, Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater. 8 (2018) 1702657. doi: 10.1002/aenm.201702657
    [62]
    J. Li, J. Qiao, K. Lian, Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: a review, Energy Stor. Mater. 24 (2020) 6–21. doi: 10.1016/j.ensm.2019.08.012
    [63]
    J. Fu, D.U. Lee, F.M. Hassan, L. Yang, Z. Bai, M.G. Park, Z. Chen, Flexible highenergy polymer-electrolyte-based rechargeable zinc-air batteries, Adv. Mater. 27 (2015) 5617–5622. doi: 10.1002/adma.201502853
    [64]
    S. Liu, M. Wang, X. Sun, N. Xu, J. Liu, Y. Wang, T. Qian, C. Yan, Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries, Adv. Mater. 30 (2018) 1704898. doi: 10.1002/adma.201704898
    [65]
    C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, N. Li, Z.F. Hou, F.Q. Bai, H.X. Zhang, T.Y. Ma, Atomic modulation of FeCo-Nitrogen-Carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery, Adv. Energy Mater. 7 (2017) 1602420. doi: 10.1002/aenm.201602420
    [66]
    C. Tang, B. Wang, H.F. Wang, Q. Zhang, Defect engineering toward atomic Co-nx -C in hierarchical graphene for rechargeable flexible solid Zn-air batteries, Adv. Mater. 29 (2017) 1703185. doi: 10.1002/adma.201703185
    [67]
    X. Fan, J. Liu, Z. Song, X. Han, Y. Deng, C. Zhong, W. Hu, Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries, Nano Energy 56 (2019) 454–462. doi: 10.1016/j.nanoen.2018.11.057
    [68]
    H. Dou, M. Xu, Y. Zheng, Z. Li, G. Wen, Z. Zhang, L. Yang, Q. Ma, A. Yu, D. Luo, X. Wang, Z. Chen, Bioinspired tough solid-state electrolyte for flexible ultralonglife zinc-air battery, Adv. Mater. 34 (2022) 2110585. doi: 10.1002/adma.202110585
    [69]
    G.M. Wu, S.J. Lin, C.C. Yang, Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes, J. Membr. Sci. 280 (2006) 802–808. doi: 10.1016/j.memsci.2006.02.037
    [70]
    Y. Xu, Y. Zhang, Z. Guo, J. Ren, Y. Wang, H. Peng, Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets, Angew. Chem. Int. Ed. 54 (2015) 15390–15394. doi: 10.1002/anie.201508848
    [71]
    J. Park, M. Park, G. Nam, J.S. Lee, J. Cho, All-solid-state cable-type flexible zincair battery, Adv. Mater. 27 (2015) 1396–1401. doi: 10.1002/adma.201404639
    [72]
    D. Lee, H.W. Kim, J.M. Kim, K.H. Kim, S.Y. Lee, Flexible/rechargeable Zn-air batteries based on multifunctional heteronanomat architecture, ACS Appl. Mater. Interfaces 10 (2018) 22210–22217. doi: 10.1021/acsami.8b05215
    [73]
    Z. Song, J. Ding, B. Liu, X. Liu, X. Han, Y. Deng, W. Hu, C. Zhong, A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly waterretentive gel electrolyte with reaction modifier, Adv. Mater. 32 (2020) 1908127. doi: 10.1002/adma.201908127
    [74]
    C. Lin, S.S. Shinde, Y. Wang, Y. Sun, S. Chen, H. Zhang, X. Li, J. -H. Lee, Flexible and rechargeable Zn–air batteries based on green feedstocks with 75% round-trip efficiency, Sustain. Energy Fuels 1 (2017) 1909–1914. doi: 10.1039/C7SE00346C
    [75]
    M. Li, B. Liu, X. Fan, X. Liu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu, C. Zhong, Longshelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries, ACS Appl. Mater. Interfaces 11 (2019) 28909–28917. doi: 10.1021/acsami.9b09086
    [76]
    N. Zhao, F. Wu, Y. Xing, W. Qu, N. Chen, Y. Shang, M. Yan, Y. Li, L. Li, R. Chen, Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries, ACS Appl. Mater. Interfaces 11 (2019) 15537–15542. doi: 10.1021/acsami.9b00758
    [77]
    Y. Wei, M. Wang, N. Xu, L. Peng, J. Mao, Q. Gong, J. Qiao, Alkaline exchange polymer membrane electrolyte for high performance of all-solid-state electrochemical devices, ACS Appl. Mater. Interfaces 10 (2018) 29593–29598. doi: 10.1021/acsami.8b09545
    [78]
    T.C. Zhou, Z. Jing, J.L. Qiao, L.L. Liu, G.P. Jiang, J. Zhang, Y.Y. Liu, High durable poly(vinyl alcohol)/Quaterized hydroxyethylcellulose ethoxylate anion exchange membranes for direct methanol alkaline fuel cells, J. Power Sources 227 (2013) 291–299. doi: 10.1016/j.jpowsour.2012.11.041
    [79]
    J. Zhang, T.C. Zhou, J.L. Qiao, Y.Y. Liu, J.J. Zhang, Hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) for alkaline fuel cell applications: effect of molecular weight, Electrochim. Acta 111 (2013) 351–358. doi: 10.1016/j.electacta.2013.07.182
    [80]
    J.L. Qiao, J. Zhang, J.J. Zhang, Anion conducting poly(vinyl alcohol)/ poly(diallyldimethylammonium chloride) membranes with high durable alkaline stability for polymer electrolyte membrane fuel cells, J. Power Sources 237 (2013) 1–4. doi: 10.1016/j.jpowsour.2013.02.059
    [81]
    C. Lin, S.S. Shinde, X. Li, D.H. Kim, N. Li, Y. Sun, X. Song, H. Zhang, C.H. Lee, S.U. Lee, J.H. Lee, Solid-state rechargeable zinc-air battery with long shelf life based on nanoengineered polymer electrolyte, ChemSusChem 11 (2018) 3215–3224. doi: 10.1002/cssc.201801274
    [82]
    J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian, J. Qiao, L. Rasen, K. Li, Z. Chen, A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries, Energy Environ. Sci. 9 (2016) 663–670. doi: 10.1039/C5EE03404C
    [83]
    S.S. Shinde, C.H. Lee, J. -Y. Jung, N.K. Wagh, S. -H. Kim, D. -H. Kim, C. Lin, S.U. Lee, J. -H. Lee, Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries, Energy Environ. Sci. 12 (2019) 727–738. doi: 10.1039/C8EE02679C
    [84]
    J. Zhang, J. Fu, X.P. Song, G.P. Jiang, H. Zarrin, P. Xu, K.C. Li, A.P. Yu, Z.W. Chen, Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries, Adv. Energy Mater. 6 (2016) 1600476. doi: 10.1002/aenm.201600476
    [85]
    G.P. Jiang, M. Goledzinowski, F.J.E. Comeau, H. Zarrin, G. Lui, J. Lenos, A. Veileux, G.H. Liu, J. Zhang, S. Hemmati, J.L. Qiao, Z.W. Chen, Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors, Adv. Funct. Mater. 26 (2016) 1729–1736. doi: 10.1002/adfm.201504604
    [86]
    W. Gao, G. Wu, M.T. Janicke, D.A. Cullen, R. Mukundan, J.K. Baldwin, E.L. Brosha, C. Galande, P.M. Ajayan, K.L. More, A.M. Dattelbaum, P. Zelenay, Ozonated graphene oxide film as a proton-exchange membrane, Angew. Chem. Int. Ed. 53 (2014) 3588–3593. doi: 10.1002/anie.201310908
    [87]
    S.S. Shinde, J.Y. Jung, N.K. Wagh, C.H. Lee, D. -H. Kim, S. -H. Kim, S.U. Lee, J. - H. Lee, Ampere-hour-scale zinc–air pouch cells, Nat. Energy 6 (2021) 592–604. doi: 10.1038/s41560-021-00807-8
    [88]
    M. Wang, N. Xu, J. Fu, Y. Liu, J. Qiao, High-performance binary cross-linked alkaline anion polymer electrolyte membranes for all-solid-state supercapacitors and flexible rechargeable zinc–air batteries, J. Mater. Chem. A 7 (2019) 11257–11264. doi: 10.1039/C9TA02314C
    [89]
    Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao, W. Li, Y. Wu, L. Liu, F. Yan, Electric-fieldinduced gradient ionogels for highly sensitive, broad-range-response, and freeze/ heat-resistant ionic fingers, Adv. Mater. 33 (2021) 2008486. doi: 10.1002/adma.202008486
    [90]
    M. Xu, H. Dou, Z. Zhang, Y. Zheng, B. Ren, Q. Ma, G. Wen, D. Luo, A. Yu, L. Zhang, X. Wang, Z. Chen, Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc–air batteries, Angew. Chem. Int. Ed. (2022) e202117703.
    [91]
    Y. Xu, Y. Zhao, J. Ren, Y. Zhang, H. Peng, An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance, Angew. Chem. Int. Ed. 128 (2016) 8111–8114. doi: 10.1002/ange.201601804
    [92]
    M.J. Tan, B. Li, P. Chee, X.M. Ge, Z.L. Liu, Y. Zong, X.J. Loh, Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries, J. Power Sources 400 (2018) 566–571. doi: 10.1016/j.jpowsour.2018.08.066
    [93]
    H. Miao, B. Chen, S.H. Li, X.Y. Wu, Q. Wang, C.F. Zhang, Z.X. Sun, H. Li, All-solidstate flexible zinc-air battery with polyacrylamide alkaline gel electrolyte, J. Power Sources 450 (2020) 227653. doi: 10.1016/j.jpowsour.2019.227653
    [94]
    X.M. Zhu, H.X. Yang, Y.L. Cao, X.P. Ai, Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution, Electrochim. Acta 49 (2004) 2533–2539. doi: 10.1016/j.electacta.2004.02.008
    [95]
    T.N.T. Tran, H. -J. Chung, D.G. Ivey, A study of alkaline gel polymer electrolytes for rechargeable zinc–air batteries, Electrochim. Acta 327 (2019) 135021. doi: 10.1016/j.electacta.2019.135021
    [96]
    Z.X. Pei, Y. Huang, Z.J. Tang, L.T. Ma, Z.X. Liu, Q. Xue, Z.F. Wang, H.F. Li, Y. Chen, C.Y. Zhi, Enabling highly efficient, flexible and rechargeable quasi-solid-state znair batteries via catalyst engineering and electrolyte functionalization, Energy Stor. Mater. 20 (2019) 234–242. doi: 10.1016/j.ensm.2018.11.010
    [97]
    Z. Cao, H. Hu, M. Wu, K. Tang, T. Jiang, Planar all-solid-state rechargeable Zn-air batteries for compact wearable energy storage, J. Mater. Chem. A 7 (2019) 17581–17593. doi: 10.1039/C9TA04569D
    [98]
    L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo, G. Liang, N. Li, H. Zhang, J.A. Zapien, C. Zhi, Super-stretchable zinc–air batteries based on an alkaline-tolerant dualnetwork hydrogel electrolyte, Adv. Energy Mater. 9 (2019) 1803046. doi: 10.1002/aenm.201803046
    [99]
    F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 ℃, Energy Environ. Sci. 12 (2019) 706–715. doi: 10.1039/C8EE02892C
    [100]
    R.M. Kumar, P. Baskar, K. Balamurugan, S. Das, V. Subramanian, On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration, J. Phys. Chem. A 116 (2012) 4239–4247.
    [101]
    L. Han, K.Z. Liu, M.H. Wang, K.F. Wang, L.M. Fang, H.T. Chen, J. Zhou, X. Lu, Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance, Adv. Funct. Mater. 28 (2018) 1704195. doi: 10.1002/adfm.201704195
    [102]
    R. Chen, X. Xu, S. Peng, J. Chen, D. Yu, C. Xiao, Y. Li, Y. Chen, X. Hu, M. Liu, H. Yang, I. Wyman, X. Wu, A flexible and safe aqueous zinc–air battery with a wide operating temperature range from −20 to 70 ℃, ACS Sustain. Chem. Eng. 8 (2020) 11501–11511. doi: 10.1021/acssuschemeng.0c01111
    [103]
    Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu, Y. Chen, A flexible rechargeable zinc-air battery with excellent low-temperature adaptability, Angew. Chem. Int. Ed. 59 (2020) 4793–4799. doi: 10.1002/anie.201915836
    [104]
    N. Sun, F. Lu, Y. Yu, L. Su, X. Gao, L. Zheng, Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc-air batteries, ACS Appl. Mater. Interfaces 12 (2020) 11778–11788. doi: 10.1021/acsami.0c00325
    [105]
    Y.N. Zhang, H.L. Qin, M. Alfred, H.Z. Ke, Y.B. Cai, Q.Q. Wang, F.L. Huang, B. Liu, P.F. Lv, Q.F. Wei, Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions, Energy Stor. Mater. 42 (2021) 88–96. doi: 10.1016/j.ensm.2021.07.026
    [106]
    Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou, M. Liu, Anti-freezing, conductive selfhealing organohydrogels with stable strain-sensitivity at subzero temperatures, Angew. Chem. Int. Ed. 56 (2017) 14159–14163. doi: 10.1002/anie.201708614
    [107]
    F. Chen, D. Zhou, J. Wang, T. Li, X. Zhou, T. Gan, S. Handschuh-Wang, X. Zhou, Rational fabrication of anti-freezing, non-drying tough organohydrogels by onepot solvent displacement, Angew. Chem. Int. Ed. 57 (2018) 6568–6571. doi: 10.1002/anie.201803366
    [108]
    C. Gu, X. -Q. Xie, Y. Liang, J. Li, H. Wang, K. Wang, J. Liu, M. Wang, Y. Zhang, M. Li, H. Kong, C. -S. Liu, Small molecule-based supramolecular-polymer doublenetwork hydrogel electrolytes for ultra-stretchable and waterproof Zn–air batteries working from −50 to 100 ℃, Energy Environ. Sci. 14 (2021) 4451–4462. doi: 10.1039/D1EE01134K
    [109]
    B. Briscoe, P. Luckham, S. Zhu, The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions, Polymer 41 (2000) 3851–3860. doi: 10.1016/S0032-3861(99)00550-9
    [110]
    C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui, Z. Yuan, S. Wang, Y. Chen, Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes, Angew. Chem. Int. Ed. 60 (2021) 990–997. doi: 10.1002/anie.202012030
    [111]
    J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty, G.D. Renderos, X. Liu, Y. Deng, L. Wang, D.C. Bock, C. Jaye, D. Zhang, E.S. Takeuchi, K.J. Takeuchi, A.C. Marschilok, L.A. Archer, Reversible epitaxial electrodeposition of metals in battery anodes, Science 366 (2019) 645–648. doi: 10.1126/science.aax6873
    [112]
    W. Huang, J. Zhao, Adsorption of quaternary ammonium gemini surfactants on zinc and the inhibitive effect on zinc corrosion in vitriolic solution, Colloid. Surface. 278 (2006) 246–251. doi: 10.1016/j.colsurfa.2005.12.028
    [113]
    Y. Li, X. Fan, X. Liu, S. Qu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu, C. Zhong, Longbattery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode, J. Mater. Chem. A 7 (2019) 25449–25457. doi: 10.1039/C9TA09137H
    [114]
    H.B. Xie, X. Yu, Y.L. Yang, Z.K. Zhao, Capturing CO2 for cellulose dissolution, Green Chem. 16 (2014) 2422–2427. doi: 10.1039/C3GC42395F
    [115]
    Y. Zhou, J. Pan, X. Ou, Q. Liu, Y. Hu, W. Li, R. Wu, J. Wen, F. Yan, CO2 ionized poly(vinyl alcohol) electrolyte for CO2-tolerant Zn-air batteries, Adv. Energy Mater. 11 (2021) 2102047. doi: 10.1002/aenm.202102047
    [116]
    Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li, M. Zhu, J. Fan, Q. Dai, M. Zhang, L. Dai, C. Zhi, Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte, Adv. Energy Mater. 8 (2018) 1802288. doi: 10.1002/aenm.201802288
    [117]
    X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, Y. Xie, A zwitterionic gel electrolyte for efficient solid-state supercapacitors, Nat. Commun. 7 (2016) 11782. doi: 10.1038/ncomms11782
    [118]
    F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao, H. Li, B. Dong, C. Zhi, Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities, Adv. Energy Mater. 11 (2020) 2000035.
    [119]
    Q. Han, X.W. Chi, S.M. Zhang, Y.Z. Liu, B.A. Zhou, J.H. Yang, Y. Liu, Durable, flexible self- standing hydrogel electrolytes enabling high- safety rechargeable solid- state zinc metal batteries, J. Mater. Chem. A 6 (2018) 23046–23054. doi: 10.1039/C8TA08314B
    [120]
    H.F. Li, C.P. Han, Y. Huang, Y. Huang, M.S. Zhu, Z.X. Pei, Q. Xue, Z.F. Wang, Z.X. Liu, Z.J. Tang, Y.K. Wang, F.Y. Kang, B.H. Li, C.Y. Zhi, An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte, Energy Environ. Sci. 11 (2018) 941–951. doi: 10.1039/C7EE03232C
    [121]
    Z.X. Liu, D.H. Wang, Z.J. Tang, G.J. Liang, Q. Yang, H.F. Li, L.T. Ma, F.N. Mo, C.Y. Zhi, A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility, Energy Stor. Mater. 23 (2019) 636–645. doi: 10.1016/j.ensm.2019.03.007
    [122]
    Z. Pei, L. Ding, C. Wang, Q. Meng, Z. Yuan, Z. Zhou, S. Zhao, Y. Chen, Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries, Energy Environ. Sci. 14 (2021) 4926–4935. doi: 10.1039/D1EE01244D
    [123]
    S.S. Soni, K.B. Fadadu, A. Gibaud, Ionic conductivity through thermoresponsive polymer gel: ordering matters, Langmuir 28 (2012) 751–756. doi: 10.1021/la202670v
    [124]
    J. Zhao, K.K. Sonigara, J. Li, J. Zhang, B. Chen, J. Zhang, S.S. Soni, X. Zhou, G. Cui, L. Chen, A smart flexible zinc battery with cooling recovery ability, Angew. Chem. Int. Ed. 56 (2017) 7871–7875. doi: 10.1002/anie.201704373
    [125]
    F.N.A. Mo, H.F. Li, Z.X. Pei, G.J. Liang, L.T. Ma, Q. Yang, D.H. Wang, Y. Huang, C.Y. Zhi, A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes, Sci. Bull. 63 (2018) 1077–1086. doi: 10.1016/j.scib.2018.06.019
    [126]
    J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries, Angew. Chem. Int. Ed. 59 (2020) 16480–16484. doi: 10.1002/anie.202007274
    [127]
    M. Keerl, V. Smirnovas, R. Winter, W. Richtering, Interplay between hydrogen bonding and macromolecular architecture leading to unusual phase behavior in thermosensitive microgels, Angew. Chem. Int. Ed. 47 (2008) 338–341. doi: 10.1002/anie.200703728
    [128]
    S. Zhao, D. Xia, M. Li, D. Cheng, K. Wang, Y.S. Meng, Z. Chen, J. Bae, Self-healing and anti-CO2 hydrogels for flexible solid-state zinc-air batteries, ACS Appl. Mater. Interfaces 13 (2021) 12033–12041. doi: 10.1021/acsami.1c00012
    [129]
    S.Y. Zhao, T. Liu, Y.W. Dai, Y. Wang, Z.J. Guo, S. Zhai, J. Yu, C.Y. Zhi, M. Ni, Allin-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries, Chem. Eng. J. 430 (2022) 132718. doi: 10.1016/j.cej.2021.132718
    [130]
    Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen, Q. Zeng, L. Zhang, W. Liu, L. Zhang, Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries, J. Mater. Chem. A 6 (2018) 17227–17234. doi: 10.1039/C8TA05642K
    [131]
    H.A. Patel, N. Mansor, S. Gadipelli, D.J. Brett, Z. Guo, Superacidity in nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells, ACS Appl. Mater. Interfaces 8 (2016) 30687–30691. doi: 10.1021/acsami.6b12240
    [132]
    C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, I.A. Rodriguez-Perez, J.X. Jiang, C. Fang, X. Ji, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chem. Commun. 54 (2018) 14097–14099. doi: 10.1039/C8CC07730D
    [133]
    F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J.A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater. 17 (2018) 543–549. doi: 10.1038/s41563-018-0063-z
    [134]
    Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed. 58 (2019) 15841–15847. doi: 10.1002/anie.201907830
    [135]
    P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries, Adv. Funct. Mater. 30 (2020) 1908528. doi: 10.1002/adfm.201908528
    [136]
    H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries, J. Mater. Chem. A 8 (2020) 7836–7846. doi: 10.1039/D0TA00748J
    [137]
    R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries, Adv. Energy Mater. 10 (2020) 1904215. doi: 10.1002/aenm.201904215
    [138]
    Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin, L. Li, Z. Yan, Q. Zhao, K. Zhang, J. Chen, Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode, Angew. Chem. Int. Ed. 60 (2021) 23357–23364. doi: 10.1002/anie.202109682
    [139]
    S. -M. Lee, Y. -J. Kim, S. -W. Eom, N. -S. Choi, K. -W. Kim, S. -B. Cho, Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density, J. Power Sources 227 (2013) 177–184. doi: 10.1016/j.jpowsour.2012.11.046
    [140]
    Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu, Y. Xiong, G. Fang, Y. Wang, P. Yang, J. Liu, W. Liu, X. Xiong, Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte, Nat. Commun. 13 (2022) 3689. doi: 10.1038/s41467-022-31383-4
    [141]
    C.P. Chen, J. Jorné, Fractal analysis of zinc electrodeposition, J. Electrochem. Soc. 137 (1990) 2047–2051. doi: 10.1149/1.2086862
    [142]
    Y. Shibuta, Y. Okajima, T. Suzuki, Phase-field modeling for electrodeposition process, Sci. Technol. Adv. Mater. 8 (2007) 511–518. doi: 10.1016/j.stam.2007.08.001
    [143]
    H.W. Zhang, Z. Liu, L. Chen, Y. Qi, S.J. Harris, P. Lu, L.Q. Chen, Understanding and predicting the lithium dendrite formation in Li-ion batteries: phase field model, ECS Trans. 61 (2014) 1–9.
    [144]
    K. Wang, P. Pei, Z. Ma, H. Chen, H. Xu, D. Chen, X. Wang, Dendrite growth in the recharging process of zinc–air batteries, J. Mater. Chem. A 3 (2015) 22648–22655. doi: 10.1039/C5TA06366C
    [145]
    N. Xu, Y. Zhang, M. Wang, X. Fan, T. Zhang, L. Peng, X. -D. Zhou, J. Qiao, Highperforming rechargeable/flexible zinc-air batteries by coordinated hierarchical Bimetallic electrocatalyst and heterostructure anion exchange membrane, Nano Energy 65 (2019) 104021. doi: 10.1016/j.nanoen.2019.104021
    [146]
    Z. Chen, W. Li, X. Yang, C. Ke, H. Chen, Q. Li, J. Guo, Y. He, Z. Guo, X. Liang, Gel polymer electrolyte with MXene to extend cycle lifespan of flexible and rechargeable Zinc–Air batteries, J. Power Sources 523 (2022) 231020. doi: 10.1016/j.jpowsour.2022.231020
    [147]
    L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X.Q. Yang, C. Wang, Solvation structure design for aqueous Zn metal batteries, J. Am. Chem. Soc. 142 (2020) 21404–21409. doi: 10.1021/jacs.0c09794
    [148]
    T.N.T. Tran, D. Aasen, D. Zhalmuratova, M. Labbe, H.J. Chung, D.G. Ivey, Compositional effects of gel polymer electrolyte and battery design for zinc-air batteries, Batteries Supercaps 3 (2020) 917–927. doi: 10.1002/batt.202000054
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (87) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return