Citation: | Liu Qingqing, Liu Ruiting, He Chaohui, Xia Chenfeng, Guo Wei, Xu Zheng-Long, Xia Bao Yu. Advanced polymer-based electrolytes in zinc–air batteries[J]. eScience, 2022, 2(5): 453-466. doi: 10.1016/j.esci.2022.08.004 |
[1] |
Z. Li, R. Gao, M. Feng, Y.P. Deng, D. Xiao, Y. Zheng, Z. Zhao, D. Luo, Y. Liu, Z. Zhang, D. Wang, Q. Li, H. Li, X. Wang, Z. Chen, Modulating metal–organic frameworks as advanced oxygen electrocatalysts, Adv. Energy Mater. 11 (2021) 2003291. doi: 10.1002/aenm.202003291
|
[2] |
H. Niu, C. Xia, L. Huang, S. Zaman, T. Maiyalagan, W. Guo, B. You, B.Y. Xia, Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis, Chin. J. Catal. 43 (2022) 1459–1472. doi: 10.1016/S1872-2067(21)63862-7
|
[3] |
L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang, B.Y. Xia, Advanced platinumbased oxygen reduction electrocatalysts for fuel cells, Acc. Chem. Res. 54 (2021) 311–322. doi: 10.1021/acs.accounts.0c00488
|
[4] |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science 355 (2017) eaad4998. doi: 10.1126/science.aad4998
|
[5] |
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 19–29. doi: 10.1038/nchem.2085
|
[6] |
P. Pei, K. Wang, Z. Ma, Technologies for extending zinc–air battery's cycle life: a review, Appl. Energy 128 (2014) 315–324. doi: 10.1016/j.apenergy.2014.04.095
|
[7] |
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao, W. Hu, Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries, Nat. Energy 5 (2020) 440–449. doi: 10.1038/s41560-020-0584-y
|
[8] |
H.F. Li, L.T. Ma, C.P. Han, Z.F. Wang, Z.X. Liu, Z.J. Tang, C.Y. Zhi, Advanced rechargeable zinc-based batteries: recent progress and future perspectives, Nano Energy 62 (2019) 550–587. doi: 10.1016/j.nanoen.2019.05.059
|
[9] |
Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes, Chem. Soc. Rev. 43 (2014) 7746–7786. doi: 10.1039/C3CS60248F
|
[10] |
M.S. Balogun, M.H. Yu, Y.C. Huan, C. Li, P.P. Fang, Y. Li, X.H. Lu, Y.X. Tong, Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries, Nano Energy 11 (2015) 348–355. doi: 10.1016/j.nanoen.2014.11.019
|
[11] |
M. -S. Balogun, Z. Wu, Y. Luo, W. Qiu, X. Fan, B. Long, M. Huang, P. Liu, Y. Tong, High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries, J. Power Sources 308 (2016) 7–17. doi: 10.1016/j.jpowsour.2016.01.043
|
[12] |
A. Huang, Y. Ma, J. Peng, L. Li, S. -l. Chou, S. Ramakrishna, S. Peng, Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience 1 (2021) 141–162. doi: 10.1016/j.esci.2021.11.006
|
[13] |
P. Li, H. Kim, J. Ming, H. -G. Jung, I. Belharouak, Y. -K. Sun, Quasi-compensatory effect in emerging anode-free lithium batteries, eScience 1 (2021) 3–12. doi: 10.1016/j.esci.2021.10.002
|
[14] |
X. Li, R. Zhao, Y. Fu, A. Manthiram, Nitrate additives for lithium batteries: mechanisms, applications, and prospects, eScience 1 (2021) 108–123. doi: 10.1016/j.esci.2021.12.006
|
[15] |
D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao, Z. Zhang, H. Dou, G. Wen, L. Shui, A. Yu, X. Wang, Z. Chen, Electrolyte design for lithium metal anode-based batteries toward extreme temperature application, Adv. Sci. 8 (2021) 2101051. doi: 10.1002/advs.202101051
|
[16] |
X. Gou, Z. Hao, Z. Hao, G. Yang, Z. Yang, X. Zhang, Z. Yan, Q. Zhao, J. Chen, In situ surface self-reconstruction strategies in Li-rich Mn-based layered cathodes for energy-dense Li-ion batteries, Adv. Funct. Mater. 32 (2022) 2112088. doi: 10.1002/adfm.202112088
|
[17] |
X. Tian, X. Zhao, Y. -Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E.J.M. Hensen, X.W. Lou, B.Y. Xia, Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells, Science 366 (2019) 850–856. doi: 10.1126/science.aaw7493
|
[18] |
J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu, B.Y. Xia, Advanced architectures and relatives of air electrodes in Zn-air batteries, Adv. Sci. 5 (2018) 1700691. doi: 10.1002/advs.201700691
|
[19] |
C. Xia, Y. Zhou, C. He, A.I. Douka, W. Guo, K. Qi, B.Y. Xia, Recent advances on electrospun nanomaterials for zinc–air batteries, Small Sci. 1 (2021) 2100010. doi: 10.1002/smsc.202100010
|
[20] |
P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai, M. Ni, M. Liu, Z. Shao, Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives, Energy Environ. Sci. 10 (2017) 2056–2080. doi: 10.1039/C7EE01913K
|
[21] |
Y. Li, H. Dai, Recent advances in zinc-air batteries, Chem. Soc. Rev. 43 (2014) 5257–5275. doi: 10.1039/C4CS00015C
|
[22] |
C. Xia, L. Huang, D. Yan, A.I. Douka, W. Guo, K. Qi, B.Y. Xia, Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc–air batteries, Adv. Funct. Mater. 31 (2021) 2105021. doi: 10.1002/adfm.202105021
|
[23] |
A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan, H. Liu, M.A. Salam, B.Y. Xia, A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries, Adv. Mater. 32 (2020) 2002170. doi: 10.1002/adma.202002170
|
[24] |
D. Du, S. Zhao, Z. Zhu, F. Li, J. Chen, Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zn-air battery, Angew. Chem. Int. Ed. 59 (2020) 18140–18144. doi: 10.1002/anie.202005929
|
[25] |
J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler, Z. Chen, Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives, Adv. Mater. 29 (2017) 1604685. doi: 10.1002/adma.201604685
|
[26] |
M. Wu, G. Zhang, L. Du, D. Yang, H. Yang, S. Sun, Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc-air batteries: recent advances, challenges, and future perspectives, Small Methods 5 (2021) 2000868. doi: 10.1002/smtd.202000868
|
[27] |
J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries, Energy Environ. Sci. 11 (2018) 3075–3095. doi: 10.1039/C8EE01991F
|
[28] |
Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong, J. Lu, Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization, ACS Energy Lett. 4 (2019) 2259–2270. doi: 10.1021/acsenergylett.9b01541
|
[29] |
X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, T. Ma, Z.Q. Liu, Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc–air batteries, Angew. Chem. Int. Ed. 131 (2019) 13425–13430. doi: 10.1002/ange.201907595
|
[30] |
H. Cheng, M. -L. Li, C. -Y. Su, N. Li, Z. -Q. Liu, Cu–Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: a high-efficiency bifunctional oxygen electrode for Zn–air batteries, Adv. Funct. Mater. 27 (2017) 1701833. doi: 10.1002/adfm.201701833
|
[31] |
D. Yu, Y. Ma, F. Hu, C.C. Lin, L. Li, H.Y. Chen, X. Han, S. Peng, Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries, Adv. Energy Mater. 11 (2021) 2101242. doi: 10.1002/aenm.202101242
|
[32] |
Q. Lu, H. Wu, X. Zheng, Y. Chen, A.L. Rogach, X. Han, Y. Deng, W. Hu, Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co–N–C moiety for enhanced oxygen electrocatalysis in Zn-air batteries, Adv. Sci. 8 (2021) 2101438. doi: 10.1002/advs.202101438
|
[33] |
X. Han, N. Li, Y.B. Kang, Q. Dou, P. Xiong, Q. Liu, J.Y. Lee, L. Dai, H.S. Park, Unveiling trifunctional active sites of a heteronanosheet electrocatalyst for integrated cascade battery/electrolyzer systems, ACS Energy Lett. 6 (2021) 2460–2468. doi: 10.1021/acsenergylett.1c00936
|
[34] |
X. Han, N. Li, P. Xiong, M.G. Jung, Y. Kang, Q. Dou, Q. Liu, J.Y. Lee, H.S. Park, Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries, InfoMat 3 (2021) 1134–1144. doi: 10.1002/inf2.12226
|
[35] |
M. Xu, D.G. Ivey, Z. Xie, W. Qu, Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement, J. Power Sources 283 (2015) 358–371. doi: 10.1016/j.jpowsour.2015.02.114
|
[36] |
X. Liu, X. Fan, B. Liu, J. Ding, Y. Deng, X. Han, C. Zhong, W. Hu, Mapping the design of electrolyte materials for electrically rechargeable zinc-air batteries, Adv. Mater. 33 (2021) 2006461. doi: 10.1002/adma.202006461
|
[37] |
S. Hosseini, S. Masoudi Soltani, Y. -Y. Li, Current status and technical challenges of electrolytes in zinc–air batteries: an in-depth review, Chem. Eng. J. 408 (2021) 127241. doi: 10.1016/j.cej.2020.127241
|
[38] |
D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer 14 (1973) 589.
|
[39] |
A.A. Mohamad, Zn/gelled 6 M KOH/O2 zinc–air battery, J. Power Sources 159 (2006) 752–757. doi: 10.1016/j.jpowsour.2005.10.110
|
[40] |
R. Othman, W.J. Basirun, A.H. Yahaya, A.K. Arof, Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells, J. Power Sources 103 (2001) 34–41. doi: 10.1016/S0378-7753(01)00823-0
|
[41] |
C. -C. Yang, S. -J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery, J. Power Sources 112 (2002) 497–503. doi: 10.1016/S0378-7753(02)00438-X
|
[42] |
N. Vassal, E. Salmon, J. -F. Fauvarque, Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO), Electrochim. Acta 45 (2000) 1527–1532. doi: 10.1016/S0013-4686(99)00369-2
|
[43] |
C. -C. Yang, S. -J. Lin, S. -T. Hsu, Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells, J. Power Sources 122 (2003) 210–218. doi: 10.1016/S0378-7753(03)00429-4
|
[44] |
H. -W. Kim, J. -M. Lim, H. -J. Lee, S. -W. Eom, Y.T. Hong, S. -Y. Lee, Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes, J. Mater. Chem. A 4 (2016) 3711–3720. doi: 10.1039/C5TA09576J
|
[45] |
J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Metal-air batteries with high energy density: Li-air versus Zn-air, Adv. Energy Mater. 1 (2011) 34–50. doi: 10.1002/aenm.201000010
|
[46] |
G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: a review, J. Membr. Sci. 377 (2011) 1–35. doi: 10.1016/j.memsci.2011.04.043
|
[47] |
J.S.B. Wyithe, A. Loeb, Magnification of light from many distant quasars by gravitational lenses, Nature 417 (2002) 923–925. doi: 10.1038/nature00794
|
[48] |
R. Ludwig, New insight into the transport mechanism of hydrated hydroxide ions in water, Angew. Chem. Int. Ed. 42 (2003) 258–260. doi: 10.1002/anie.200390097
|
[49] |
A. Sumboja, X. Ge, G. Zheng, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst, J. Power Sources 332 (2016) 330–336. doi: 10.1016/j.jpowsour.2016.09.142
|
[50] |
L. Li, Y. Fu, A. Manthiram, Imidazole-buffered acidic catholytes for hybrid Li–air batteries with high practical energy density, Electrochem. Commun. 47 (2014) 67–70. doi: 10.1016/j.elecom.2014.07.027
|
[51] |
Q. Dou, L. Liu, B. Yang, J. Lang, X. Yan, Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors, Nat. Commun. 8 (2017) 2188. doi: 10.1038/s41467-017-02152-5
|
[52] |
W. Xu, C.A. Angell, Solvent-Free electrolytes with aqueous solution–like conductivities, Science 302 (2003) 422–425. doi: 10.1126/science.1090287
|
[53] |
B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci. 12 (2019) 3288–3304. doi: 10.1039/C9EE02526J
|
[54] |
G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, Y. Meng, Polymer-based solid electrolytes: material selection, design, and application, Adv. Funct. Mater. 31 (2020) 2007598.
|
[55] |
S. Zhang, S. Li, Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: a review, eScience 1 (2021) 163–177. doi: 10.1016/j.esci.2021.12.003
|
[56] |
E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chem. Soc. Rev. 40 (2011) 2525–2540. doi: 10.1039/c0cs00081g
|
[57] |
S. Gao, J. Zhong, G.B. Xue, B. Wang, Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide, J. Membr. Sci. 470 (2014) 316–322. doi: 10.1016/j.memsci.2014.07.044
|
[58] |
C.F. Yuan, J. Li, P.F. Han, Y.Q. Lai, Z.A. Zhang, J. Liu, Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework, J. Power Sources 240 (2013) 653–658. doi: 10.1016/j.jpowsour.2013.05.030
|
[59] |
C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers, Nano Lett. 12 (2012) 1152–1156. doi: 10.1021/nl202692y
|
[60] |
J. Lai, Y. Xing, N. Chen, L. Li, F. Wu, R. Chen, Electrolytes for rechargeable lithium-air batteries, Angew. Chem. Int. Ed. 59 (2020) 2974–2997. doi: 10.1002/anie.201903459
|
[61] |
L. Fan, S.Y. Wei, S.Y. Li, Q. Li, Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater. 8 (2018) 1702657. doi: 10.1002/aenm.201702657
|
[62] |
J. Li, J. Qiao, K. Lian, Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: a review, Energy Stor. Mater. 24 (2020) 6–21. doi: 10.1016/j.ensm.2019.08.012
|
[63] |
J. Fu, D.U. Lee, F.M. Hassan, L. Yang, Z. Bai, M.G. Park, Z. Chen, Flexible highenergy polymer-electrolyte-based rechargeable zinc-air batteries, Adv. Mater. 27 (2015) 5617–5622. doi: 10.1002/adma.201502853
|
[64] |
S. Liu, M. Wang, X. Sun, N. Xu, J. Liu, Y. Wang, T. Qian, C. Yan, Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries, Adv. Mater. 30 (2018) 1704898. doi: 10.1002/adma.201704898
|
[65] |
C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, N. Li, Z.F. Hou, F.Q. Bai, H.X. Zhang, T.Y. Ma, Atomic modulation of FeCo-Nitrogen-Carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery, Adv. Energy Mater. 7 (2017) 1602420. doi: 10.1002/aenm.201602420
|
[66] |
C. Tang, B. Wang, H.F. Wang, Q. Zhang, Defect engineering toward atomic Co-nx -C in hierarchical graphene for rechargeable flexible solid Zn-air batteries, Adv. Mater. 29 (2017) 1703185. doi: 10.1002/adma.201703185
|
[67] |
X. Fan, J. Liu, Z. Song, X. Han, Y. Deng, C. Zhong, W. Hu, Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries, Nano Energy 56 (2019) 454–462. doi: 10.1016/j.nanoen.2018.11.057
|
[68] |
H. Dou, M. Xu, Y. Zheng, Z. Li, G. Wen, Z. Zhang, L. Yang, Q. Ma, A. Yu, D. Luo, X. Wang, Z. Chen, Bioinspired tough solid-state electrolyte for flexible ultralonglife zinc-air battery, Adv. Mater. 34 (2022) 2110585. doi: 10.1002/adma.202110585
|
[69] |
G.M. Wu, S.J. Lin, C.C. Yang, Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes, J. Membr. Sci. 280 (2006) 802–808. doi: 10.1016/j.memsci.2006.02.037
|
[70] |
Y. Xu, Y. Zhang, Z. Guo, J. Ren, Y. Wang, H. Peng, Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets, Angew. Chem. Int. Ed. 54 (2015) 15390–15394. doi: 10.1002/anie.201508848
|
[71] |
J. Park, M. Park, G. Nam, J.S. Lee, J. Cho, All-solid-state cable-type flexible zincair battery, Adv. Mater. 27 (2015) 1396–1401. doi: 10.1002/adma.201404639
|
[72] |
D. Lee, H.W. Kim, J.M. Kim, K.H. Kim, S.Y. Lee, Flexible/rechargeable Zn-air batteries based on multifunctional heteronanomat architecture, ACS Appl. Mater. Interfaces 10 (2018) 22210–22217. doi: 10.1021/acsami.8b05215
|
[73] |
Z. Song, J. Ding, B. Liu, X. Liu, X. Han, Y. Deng, W. Hu, C. Zhong, A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly waterretentive gel electrolyte with reaction modifier, Adv. Mater. 32 (2020) 1908127. doi: 10.1002/adma.201908127
|
[74] |
C. Lin, S.S. Shinde, Y. Wang, Y. Sun, S. Chen, H. Zhang, X. Li, J. -H. Lee, Flexible and rechargeable Zn–air batteries based on green feedstocks with 75% round-trip efficiency, Sustain. Energy Fuels 1 (2017) 1909–1914. doi: 10.1039/C7SE00346C
|
[75] |
M. Li, B. Liu, X. Fan, X. Liu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu, C. Zhong, Longshelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries, ACS Appl. Mater. Interfaces 11 (2019) 28909–28917. doi: 10.1021/acsami.9b09086
|
[76] |
N. Zhao, F. Wu, Y. Xing, W. Qu, N. Chen, Y. Shang, M. Yan, Y. Li, L. Li, R. Chen, Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries, ACS Appl. Mater. Interfaces 11 (2019) 15537–15542. doi: 10.1021/acsami.9b00758
|
[77] |
Y. Wei, M. Wang, N. Xu, L. Peng, J. Mao, Q. Gong, J. Qiao, Alkaline exchange polymer membrane electrolyte for high performance of all-solid-state electrochemical devices, ACS Appl. Mater. Interfaces 10 (2018) 29593–29598. doi: 10.1021/acsami.8b09545
|
[78] |
T.C. Zhou, Z. Jing, J.L. Qiao, L.L. Liu, G.P. Jiang, J. Zhang, Y.Y. Liu, High durable poly(vinyl alcohol)/Quaterized hydroxyethylcellulose ethoxylate anion exchange membranes for direct methanol alkaline fuel cells, J. Power Sources 227 (2013) 291–299. doi: 10.1016/j.jpowsour.2012.11.041
|
[79] |
J. Zhang, T.C. Zhou, J.L. Qiao, Y.Y. Liu, J.J. Zhang, Hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) for alkaline fuel cell applications: effect of molecular weight, Electrochim. Acta 111 (2013) 351–358. doi: 10.1016/j.electacta.2013.07.182
|
[80] |
J.L. Qiao, J. Zhang, J.J. Zhang, Anion conducting poly(vinyl alcohol)/ poly(diallyldimethylammonium chloride) membranes with high durable alkaline stability for polymer electrolyte membrane fuel cells, J. Power Sources 237 (2013) 1–4. doi: 10.1016/j.jpowsour.2013.02.059
|
[81] |
C. Lin, S.S. Shinde, X. Li, D.H. Kim, N. Li, Y. Sun, X. Song, H. Zhang, C.H. Lee, S.U. Lee, J.H. Lee, Solid-state rechargeable zinc-air battery with long shelf life based on nanoengineered polymer electrolyte, ChemSusChem 11 (2018) 3215–3224. doi: 10.1002/cssc.201801274
|
[82] |
J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian, J. Qiao, L. Rasen, K. Li, Z. Chen, A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries, Energy Environ. Sci. 9 (2016) 663–670. doi: 10.1039/C5EE03404C
|
[83] |
S.S. Shinde, C.H. Lee, J. -Y. Jung, N.K. Wagh, S. -H. Kim, D. -H. Kim, C. Lin, S.U. Lee, J. -H. Lee, Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries, Energy Environ. Sci. 12 (2019) 727–738. doi: 10.1039/C8EE02679C
|
[84] |
J. Zhang, J. Fu, X.P. Song, G.P. Jiang, H. Zarrin, P. Xu, K.C. Li, A.P. Yu, Z.W. Chen, Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries, Adv. Energy Mater. 6 (2016) 1600476. doi: 10.1002/aenm.201600476
|
[85] |
G.P. Jiang, M. Goledzinowski, F.J.E. Comeau, H. Zarrin, G. Lui, J. Lenos, A. Veileux, G.H. Liu, J. Zhang, S. Hemmati, J.L. Qiao, Z.W. Chen, Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors, Adv. Funct. Mater. 26 (2016) 1729–1736. doi: 10.1002/adfm.201504604
|
[86] |
W. Gao, G. Wu, M.T. Janicke, D.A. Cullen, R. Mukundan, J.K. Baldwin, E.L. Brosha, C. Galande, P.M. Ajayan, K.L. More, A.M. Dattelbaum, P. Zelenay, Ozonated graphene oxide film as a proton-exchange membrane, Angew. Chem. Int. Ed. 53 (2014) 3588–3593. doi: 10.1002/anie.201310908
|
[87] |
S.S. Shinde, J.Y. Jung, N.K. Wagh, C.H. Lee, D. -H. Kim, S. -H. Kim, S.U. Lee, J. - H. Lee, Ampere-hour-scale zinc–air pouch cells, Nat. Energy 6 (2021) 592–604. doi: 10.1038/s41560-021-00807-8
|
[88] |
M. Wang, N. Xu, J. Fu, Y. Liu, J. Qiao, High-performance binary cross-linked alkaline anion polymer electrolyte membranes for all-solid-state supercapacitors and flexible rechargeable zinc–air batteries, J. Mater. Chem. A 7 (2019) 11257–11264. doi: 10.1039/C9TA02314C
|
[89] |
Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao, W. Li, Y. Wu, L. Liu, F. Yan, Electric-fieldinduced gradient ionogels for highly sensitive, broad-range-response, and freeze/ heat-resistant ionic fingers, Adv. Mater. 33 (2021) 2008486. doi: 10.1002/adma.202008486
|
[90] |
M. Xu, H. Dou, Z. Zhang, Y. Zheng, B. Ren, Q. Ma, G. Wen, D. Luo, A. Yu, L. Zhang, X. Wang, Z. Chen, Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc–air batteries, Angew. Chem. Int. Ed. (2022) e202117703.
|
[91] |
Y. Xu, Y. Zhao, J. Ren, Y. Zhang, H. Peng, An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance, Angew. Chem. Int. Ed. 128 (2016) 8111–8114. doi: 10.1002/ange.201601804
|
[92] |
M.J. Tan, B. Li, P. Chee, X.M. Ge, Z.L. Liu, Y. Zong, X.J. Loh, Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries, J. Power Sources 400 (2018) 566–571. doi: 10.1016/j.jpowsour.2018.08.066
|
[93] |
H. Miao, B. Chen, S.H. Li, X.Y. Wu, Q. Wang, C.F. Zhang, Z.X. Sun, H. Li, All-solidstate flexible zinc-air battery with polyacrylamide alkaline gel electrolyte, J. Power Sources 450 (2020) 227653. doi: 10.1016/j.jpowsour.2019.227653
|
[94] |
X.M. Zhu, H.X. Yang, Y.L. Cao, X.P. Ai, Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution, Electrochim. Acta 49 (2004) 2533–2539. doi: 10.1016/j.electacta.2004.02.008
|
[95] |
T.N.T. Tran, H. -J. Chung, D.G. Ivey, A study of alkaline gel polymer electrolytes for rechargeable zinc–air batteries, Electrochim. Acta 327 (2019) 135021. doi: 10.1016/j.electacta.2019.135021
|
[96] |
Z.X. Pei, Y. Huang, Z.J. Tang, L.T. Ma, Z.X. Liu, Q. Xue, Z.F. Wang, H.F. Li, Y. Chen, C.Y. Zhi, Enabling highly efficient, flexible and rechargeable quasi-solid-state znair batteries via catalyst engineering and electrolyte functionalization, Energy Stor. Mater. 20 (2019) 234–242. doi: 10.1016/j.ensm.2018.11.010
|
[97] |
Z. Cao, H. Hu, M. Wu, K. Tang, T. Jiang, Planar all-solid-state rechargeable Zn-air batteries for compact wearable energy storage, J. Mater. Chem. A 7 (2019) 17581–17593. doi: 10.1039/C9TA04569D
|
[98] |
L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo, G. Liang, N. Li, H. Zhang, J.A. Zapien, C. Zhi, Super-stretchable zinc–air batteries based on an alkaline-tolerant dualnetwork hydrogel electrolyte, Adv. Energy Mater. 9 (2019) 1803046. doi: 10.1002/aenm.201803046
|
[99] |
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 ℃, Energy Environ. Sci. 12 (2019) 706–715. doi: 10.1039/C8EE02892C
|
[100] |
R.M. Kumar, P. Baskar, K. Balamurugan, S. Das, V. Subramanian, On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration, J. Phys. Chem. A 116 (2012) 4239–4247.
|
[101] |
L. Han, K.Z. Liu, M.H. Wang, K.F. Wang, L.M. Fang, H.T. Chen, J. Zhou, X. Lu, Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance, Adv. Funct. Mater. 28 (2018) 1704195. doi: 10.1002/adfm.201704195
|
[102] |
R. Chen, X. Xu, S. Peng, J. Chen, D. Yu, C. Xiao, Y. Li, Y. Chen, X. Hu, M. Liu, H. Yang, I. Wyman, X. Wu, A flexible and safe aqueous zinc–air battery with a wide operating temperature range from −20 to 70 ℃, ACS Sustain. Chem. Eng. 8 (2020) 11501–11511. doi: 10.1021/acssuschemeng.0c01111
|
[103] |
Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu, Y. Chen, A flexible rechargeable zinc-air battery with excellent low-temperature adaptability, Angew. Chem. Int. Ed. 59 (2020) 4793–4799. doi: 10.1002/anie.201915836
|
[104] |
N. Sun, F. Lu, Y. Yu, L. Su, X. Gao, L. Zheng, Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc-air batteries, ACS Appl. Mater. Interfaces 12 (2020) 11778–11788. doi: 10.1021/acsami.0c00325
|
[105] |
Y.N. Zhang, H.L. Qin, M. Alfred, H.Z. Ke, Y.B. Cai, Q.Q. Wang, F.L. Huang, B. Liu, P.F. Lv, Q.F. Wei, Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions, Energy Stor. Mater. 42 (2021) 88–96. doi: 10.1016/j.ensm.2021.07.026
|
[106] |
Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou, M. Liu, Anti-freezing, conductive selfhealing organohydrogels with stable strain-sensitivity at subzero temperatures, Angew. Chem. Int. Ed. 56 (2017) 14159–14163. doi: 10.1002/anie.201708614
|
[107] |
F. Chen, D. Zhou, J. Wang, T. Li, X. Zhou, T. Gan, S. Handschuh-Wang, X. Zhou, Rational fabrication of anti-freezing, non-drying tough organohydrogels by onepot solvent displacement, Angew. Chem. Int. Ed. 57 (2018) 6568–6571. doi: 10.1002/anie.201803366
|
[108] |
C. Gu, X. -Q. Xie, Y. Liang, J. Li, H. Wang, K. Wang, J. Liu, M. Wang, Y. Zhang, M. Li, H. Kong, C. -S. Liu, Small molecule-based supramolecular-polymer doublenetwork hydrogel electrolytes for ultra-stretchable and waterproof Zn–air batteries working from −50 to 100 ℃, Energy Environ. Sci. 14 (2021) 4451–4462. doi: 10.1039/D1EE01134K
|
[109] |
B. Briscoe, P. Luckham, S. Zhu, The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions, Polymer 41 (2000) 3851–3860. doi: 10.1016/S0032-3861(99)00550-9
|
[110] |
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui, Z. Yuan, S. Wang, Y. Chen, Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes, Angew. Chem. Int. Ed. 60 (2021) 990–997. doi: 10.1002/anie.202012030
|
[111] |
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty, G.D. Renderos, X. Liu, Y. Deng, L. Wang, D.C. Bock, C. Jaye, D. Zhang, E.S. Takeuchi, K.J. Takeuchi, A.C. Marschilok, L.A. Archer, Reversible epitaxial electrodeposition of metals in battery anodes, Science 366 (2019) 645–648. doi: 10.1126/science.aax6873
|
[112] |
W. Huang, J. Zhao, Adsorption of quaternary ammonium gemini surfactants on zinc and the inhibitive effect on zinc corrosion in vitriolic solution, Colloid. Surface. 278 (2006) 246–251. doi: 10.1016/j.colsurfa.2005.12.028
|
[113] |
Y. Li, X. Fan, X. Liu, S. Qu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu, C. Zhong, Longbattery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode, J. Mater. Chem. A 7 (2019) 25449–25457. doi: 10.1039/C9TA09137H
|
[114] |
H.B. Xie, X. Yu, Y.L. Yang, Z.K. Zhao, Capturing CO2 for cellulose dissolution, Green Chem. 16 (2014) 2422–2427. doi: 10.1039/C3GC42395F
|
[115] |
Y. Zhou, J. Pan, X. Ou, Q. Liu, Y. Hu, W. Li, R. Wu, J. Wen, F. Yan, CO2 ionized poly(vinyl alcohol) electrolyte for CO2-tolerant Zn-air batteries, Adv. Energy Mater. 11 (2021) 2102047. doi: 10.1002/aenm.202102047
|
[116] |
Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li, M. Zhu, J. Fan, Q. Dai, M. Zhang, L. Dai, C. Zhi, Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte, Adv. Energy Mater. 8 (2018) 1802288. doi: 10.1002/aenm.201802288
|
[117] |
X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, Y. Xie, A zwitterionic gel electrolyte for efficient solid-state supercapacitors, Nat. Commun. 7 (2016) 11782. doi: 10.1038/ncomms11782
|
[118] |
F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao, H. Li, B. Dong, C. Zhi, Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities, Adv. Energy Mater. 11 (2020) 2000035.
|
[119] |
Q. Han, X.W. Chi, S.M. Zhang, Y.Z. Liu, B.A. Zhou, J.H. Yang, Y. Liu, Durable, flexible self- standing hydrogel electrolytes enabling high- safety rechargeable solid- state zinc metal batteries, J. Mater. Chem. A 6 (2018) 23046–23054. doi: 10.1039/C8TA08314B
|
[120] |
H.F. Li, C.P. Han, Y. Huang, Y. Huang, M.S. Zhu, Z.X. Pei, Q. Xue, Z.F. Wang, Z.X. Liu, Z.J. Tang, Y.K. Wang, F.Y. Kang, B.H. Li, C.Y. Zhi, An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte, Energy Environ. Sci. 11 (2018) 941–951. doi: 10.1039/C7EE03232C
|
[121] |
Z.X. Liu, D.H. Wang, Z.J. Tang, G.J. Liang, Q. Yang, H.F. Li, L.T. Ma, F.N. Mo, C.Y. Zhi, A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility, Energy Stor. Mater. 23 (2019) 636–645. doi: 10.1016/j.ensm.2019.03.007
|
[122] |
Z. Pei, L. Ding, C. Wang, Q. Meng, Z. Yuan, Z. Zhou, S. Zhao, Y. Chen, Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries, Energy Environ. Sci. 14 (2021) 4926–4935. doi: 10.1039/D1EE01244D
|
[123] |
S.S. Soni, K.B. Fadadu, A. Gibaud, Ionic conductivity through thermoresponsive polymer gel: ordering matters, Langmuir 28 (2012) 751–756. doi: 10.1021/la202670v
|
[124] |
J. Zhao, K.K. Sonigara, J. Li, J. Zhang, B. Chen, J. Zhang, S.S. Soni, X. Zhou, G. Cui, L. Chen, A smart flexible zinc battery with cooling recovery ability, Angew. Chem. Int. Ed. 56 (2017) 7871–7875. doi: 10.1002/anie.201704373
|
[125] |
F.N.A. Mo, H.F. Li, Z.X. Pei, G.J. Liang, L.T. Ma, Q. Yang, D.H. Wang, Y. Huang, C.Y. Zhi, A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes, Sci. Bull. 63 (2018) 1077–1086. doi: 10.1016/j.scib.2018.06.019
|
[126] |
J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Thermal-gated polymer electrolytes for smart zinc-ion batteries, Angew. Chem. Int. Ed. 59 (2020) 16480–16484. doi: 10.1002/anie.202007274
|
[127] |
M. Keerl, V. Smirnovas, R. Winter, W. Richtering, Interplay between hydrogen bonding and macromolecular architecture leading to unusual phase behavior in thermosensitive microgels, Angew. Chem. Int. Ed. 47 (2008) 338–341. doi: 10.1002/anie.200703728
|
[128] |
S. Zhao, D. Xia, M. Li, D. Cheng, K. Wang, Y.S. Meng, Z. Chen, J. Bae, Self-healing and anti-CO2 hydrogels for flexible solid-state zinc-air batteries, ACS Appl. Mater. Interfaces 13 (2021) 12033–12041. doi: 10.1021/acsami.1c00012
|
[129] |
S.Y. Zhao, T. Liu, Y.W. Dai, Y. Wang, Z.J. Guo, S. Zhai, J. Yu, C.Y. Zhi, M. Ni, Allin-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries, Chem. Eng. J. 430 (2022) 132718. doi: 10.1016/j.cej.2021.132718
|
[130] |
Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen, Q. Zeng, L. Zhang, W. Liu, L. Zhang, Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries, J. Mater. Chem. A 6 (2018) 17227–17234. doi: 10.1039/C8TA05642K
|
[131] |
H.A. Patel, N. Mansor, S. Gadipelli, D.J. Brett, Z. Guo, Superacidity in nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells, ACS Appl. Mater. Interfaces 8 (2016) 30687–30691. doi: 10.1021/acsami.6b12240
|
[132] |
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, I.A. Rodriguez-Perez, J.X. Jiang, C. Fang, X. Ji, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chem. Commun. 54 (2018) 14097–14099. doi: 10.1039/C8CC07730D
|
[133] |
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J.A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater. 17 (2018) 543–549. doi: 10.1038/s41563-018-0063-z
|
[134] |
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed. 58 (2019) 15841–15847. doi: 10.1002/anie.201907830
|
[135] |
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries, Adv. Funct. Mater. 30 (2020) 1908528. doi: 10.1002/adfm.201908528
|
[136] |
H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries, J. Mater. Chem. A 8 (2020) 7836–7846. doi: 10.1039/D0TA00748J
|
[137] |
R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries, Adv. Energy Mater. 10 (2020) 1904215. doi: 10.1002/aenm.201904215
|
[138] |
Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin, L. Li, Z. Yan, Q. Zhao, K. Zhang, J. Chen, Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode, Angew. Chem. Int. Ed. 60 (2021) 23357–23364. doi: 10.1002/anie.202109682
|
[139] |
S. -M. Lee, Y. -J. Kim, S. -W. Eom, N. -S. Choi, K. -W. Kim, S. -B. Cho, Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density, J. Power Sources 227 (2013) 177–184. doi: 10.1016/j.jpowsour.2012.11.046
|
[140] |
Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu, Y. Xiong, G. Fang, Y. Wang, P. Yang, J. Liu, W. Liu, X. Xiong, Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte, Nat. Commun. 13 (2022) 3689. doi: 10.1038/s41467-022-31383-4
|
[141] |
C.P. Chen, J. Jorné, Fractal analysis of zinc electrodeposition, J. Electrochem. Soc. 137 (1990) 2047–2051. doi: 10.1149/1.2086862
|
[142] |
Y. Shibuta, Y. Okajima, T. Suzuki, Phase-field modeling for electrodeposition process, Sci. Technol. Adv. Mater. 8 (2007) 511–518. doi: 10.1016/j.stam.2007.08.001
|
[143] |
H.W. Zhang, Z. Liu, L. Chen, Y. Qi, S.J. Harris, P. Lu, L.Q. Chen, Understanding and predicting the lithium dendrite formation in Li-ion batteries: phase field model, ECS Trans. 61 (2014) 1–9.
|
[144] |
K. Wang, P. Pei, Z. Ma, H. Chen, H. Xu, D. Chen, X. Wang, Dendrite growth in the recharging process of zinc–air batteries, J. Mater. Chem. A 3 (2015) 22648–22655. doi: 10.1039/C5TA06366C
|
[145] |
N. Xu, Y. Zhang, M. Wang, X. Fan, T. Zhang, L. Peng, X. -D. Zhou, J. Qiao, Highperforming rechargeable/flexible zinc-air batteries by coordinated hierarchical Bimetallic electrocatalyst and heterostructure anion exchange membrane, Nano Energy 65 (2019) 104021. doi: 10.1016/j.nanoen.2019.104021
|
[146] |
Z. Chen, W. Li, X. Yang, C. Ke, H. Chen, Q. Li, J. Guo, Y. He, Z. Guo, X. Liang, Gel polymer electrolyte with MXene to extend cycle lifespan of flexible and rechargeable Zinc–Air batteries, J. Power Sources 523 (2022) 231020. doi: 10.1016/j.jpowsour.2022.231020
|
[147] |
L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X.Q. Yang, C. Wang, Solvation structure design for aqueous Zn metal batteries, J. Am. Chem. Soc. 142 (2020) 21404–21409. doi: 10.1021/jacs.0c09794
|
[148] |
T.N.T. Tran, D. Aasen, D. Zhalmuratova, M. Labbe, H.J. Chung, D.G. Ivey, Compositional effects of gel polymer electrolyte and battery design for zinc-air batteries, Batteries Supercaps 3 (2020) 917–927. doi: 10.1002/batt.202000054
|