Citation: | Zhai Yanjie, Han Peng, Yun Qinbai, Ge Yiyao, Zhang Xiao, Chen Ye, Zhang Hua. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction[J]. eScience, 2022, 2(5): 467-485. doi: 10.1016/j.esci.2022.09.002 |
[1] |
X.Y. Tan, C. Yu, Y.W. Ren, S. Cui, W.B. Li, J.S. Qiu, Recent advances in innovative strategies for the CO2 electroreduction reaction, Energy Environ. Sci. 14 (2021) 765–780. doi: 10.1039/D0EE02981E
|
[2] |
R. Daiyan, W.H. Saputera, H. Masood, J. Leverett, X.Y. Lu, R. Amal, A Disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel, Adv. Energy Mater. 10 (2020) 1902106. doi: 10.1002/aenm.201902106
|
[3] |
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nat. Mater. 16 (2017) 16–22. doi: 10.1038/nmat4834
|
[4] |
A. Rafiee, K.R. Khalilpour, D. Milani, M. Panahi, Trends in CO2 conversion and utilization: a review from process systems perspective, J. Environ. Chem. Eng. 6 (2018) 5771–5794. doi: 10.1016/j.jece.2018.08.065
|
[5] |
Y. Zhang, S.X. Guo, X.L. Zhang, A.M. Bond, J. Zhang, Mechanistic understanding of the electrocatalytic CO2 reduction reaction-new developments based on advanced instrumental techniques, Nano Today 31 (2020) 100835. doi: 10.1016/j.nantod.2019.100835
|
[6] |
J. Su, Y. Liu, Y. Song, L. Huang, W. Guo, X. Cao, Y. Dou, L. Cheng, G. Li, Q. Hu, Recent development of nanomaterials for carbon dioxide electroreduction, SmartMat 3 (2022) 35–53. doi: 10.1002/smm2.1106
|
[7] |
J.J. Wang, X.P. Li, B.F. Cui, Z. Zhang, X.F. Hu, J. Ding, Y.D. Deng, X.P. Han, W.B. Hu, A review of non-noble metal-based electrocatalysts for CO2 electroreduction, Rare Metals 40 (2021) 3019–3037. doi: 10.1007/s12598-021-01736-x
|
[8] |
X. Huang, J.L. Song, M.L. Hua, Z.B. Xie, S.S. Liu, T.B. Wu, G.Y. Yang, B.X. Han, Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxyme-thylfurfural by introducing oxygen vacancies, Green Chem. 22 (2020) 843–849. doi: 10.1039/C9GC03698A
|
[9] |
J.J. Wang, G.J. Wang, J.F. Zhang, Y.D. Wang, H. Wu, X.R. Zheng, J. Ding, X.P. Han, Y.D. Deng, W.B. Hu, Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping, Angew. Chem. Int. Ed. 133 (2021) 7680–7684. doi: 10.1002/ange.202016022
|
[10] |
M.H. Li, H.F. Wang, W. Luo, P.C. Sherrell, J. Chen, J.P. Yang, Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction, Adv. Mater. 32 (2020) 2001848. doi: 10.1002/adma.202001848
|
[11] |
D.F. Gao, T.F. Liu, G.X. Wang, X.H. Bao, Structure sensitivity in single-atom catalysis toward CO2 electroreduction, ACS Energy Lett. 6 (2021) 713–727. doi: 10.1021/acsenergylett.0c02665
|
[12] |
S. Liu, H.B. Yang, S.F. Hung, J. Ding, W.Z. Cai, L.H. Liu, J.J. Gao, X.N. Li, X.Y. Ren, Z.C. Kuang, Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst, Angew. Chem. Int. Ed. 59 (2020) 798–803. doi: 10.1002/anie.201911995
|
[13] |
D.H. Nam, O.S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani, C.T. Dinh, F.P. García de Arquer, Y.H. Wang, Z.Q. Liang, A.H. Proppe, Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction, J. Am. Chem. Soc. 140 (2018) 11378–11386. doi: 10.1021/jacs.8b06407
|
[14] |
D. Yang, X. Wang, 2D π-conjugated metal-organic frameworks for CO2 electroreduction, SmartMat 3 (2022) 54–67. doi: 10.1002/smm2.1102
|
[15] |
X. Yang, Q.X. Li, S.Y. Chi, H.F. Li, Y.B. Huang, R. Cao, Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO2, SmartMat 3 (2022) 163–172. doi: 10.1002/smm2.1086
|
[16] |
M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J.M. Cerrato, R. Haasch, Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, Science 353 (2016) 467–470. doi: 10.1126/science.aaf4767
|
[17] |
M. Asadi, B. Kumar, A. Behranginia, B.A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun. 5 (2014) 1–8.
|
[18] |
C. Chang, W. Chen, Y. Chen, et al., Recent progress on two-dimensional materials, Acta Phys. Chim. Sin. 37 (2021) 2108017.
|
[19] |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science 355 (2017) eaad4998. doi: 10.1126/science.aad4998
|
[20] |
S.R. Hui, P. De Luna, How increasing proton and electron conduction benefits electrocatalytic CO2 reduction, Matter 4 (2021) 1555–1577. doi: 10.1016/j.matt.2021.02.021
|
[21] |
S.L. Jiao, X.W. Fu, H.W. Huang, Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond, Adv. Funct. Mater. 32 (2021) 2107651.
|
[22] |
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo, M.T.M. Koper, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy 4 (2019) 732–745. doi: 10.1038/s41560-019-0450-y
|
[23] |
A.Q. Chen, B.L. Lin, A simple framework for quantifying electrochemical CO2 fixation, Joule 2 (2018) 594–606. doi: 10.1016/j.joule.2018.02.003
|
[24] |
D.M. Koshy, S.A. Akhade, A. Shugar, K. Abiose, J.W. Shi, S. Liang, J.S. Oakdale, S.E. Weitzner, J.B. Varley, E.B. Duoss, S.E. Baker, C. Hahn, Z. Bao, T.F. Jaramillo, Chemical modifications of Ag catalyst surfaces with imidazolium ionomers modulate H2 evolution rates during electrochemical CO2 reduction, J. Am. Chem. Soc. 143 (2021) 14712–14725. doi: 10.1021/jacs.1c06212
|
[25] |
J.J. Fu, W.L. Zhu, Y. Chen, Z.Y. Yin, Y.Y. Li, J. Liu, H.Y. Zhang, J.J. Zhu, S.H. Sun, Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2, Angew. Chem. Int. Ed. 131 (2019) 14238–14241. doi: 10.1002/ange.201905318
|
[26] |
Q. Chang, J. Kim, J.H. Lee, S. Kattel, J.G. Chen, S.I. Choi, Z. Chen, Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes, Small 16 (2020) e2005305. doi: 10.1002/smll.202005305
|
[27] |
H. Xie, T.Y. Wang, J.S. Liang, Q. Li, S.H. Sun, Cu-based nanocatalysts for electrochemical reduction of CO2, Nano Today 21 (2018) 41–54. doi: 10.1016/j.nantod.2018.05.001
|
[28] |
Y. Chen, Z.C. Lai, X. Zhang, Z.X. Fan, Q.Y. He, C.L. Tan, H. Zhang, Phase engineering of nanomaterials, Nat. Rev. Chem. 4 (2020) 243–256. doi: 10.1038/s41570-020-0173-4
|
[29] |
W.Y. Deng, L. Zhang, H. Dong, X.X. Chang, T. Wang, J.L. Gong, Achieving convenient CO2 electroreduction and photovoltage in tandem using potentialinsensitive disordered Ag nanoparticles, Chem. Sci. 9 (2018) 6599–6604. doi: 10.1039/C8SC02576B
|
[30] |
X.L. Zheng, P. De Luna, F.P.G. de Arquer, B. Zhang, N. Becknell, M.B. Ross, Y. Li, M.N. Banis, Y.Z. Li, M. Liu, O. Voznyy, C.T. Dinh, T. Zhuang, P. Stadler, Y. Cui, X. Du, P. Yang, E.H. Sargent, Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate, Joule 1 (2017) 794–805. doi: 10.1016/j.joule.2017.09.014
|
[31] |
W. Luc, C. Collins, S.W. Wang, H.L. Xin, K. He, Y.J. Kang, F. Jiao, Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction, J. Am. Chem. Soc. 139 (2017) 1885–1893. doi: 10.1021/jacs.6b10435
|
[32] |
Y.X. Duan, F.L. Meng, K.H. Liu, S.S. Yi, S.J. Li, J.M. Yan, Q. Jiang, Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high Faradaic efficiencies, Adv. Mater. 30 (2018) e1706194. doi: 10.1002/adma.201706194
|
[33] |
Y.X. Wang, C.Y. Li, Z.X. Fan, Y. Chen, X. Li, L. Cao, C.H. Wang, L. Wang, D. Su, H. Zhang, T. Mueller, C. Wang, Undercoordinated active sites on 4H gold nanostructures for CO2 reduction, Nano Lett. 20 (2020) 8074–8080. doi: 10.1021/acs.nanolett.0c03073
|
[34] |
Z.X. Fan, M. Bosman, Z.Q. Huang, Y. Chen, C.Y. Ling, L. Wu, Y.A. Akimov, R. Laskowski, B. Chen, P. Ercius, J. Zhang, X.Y. Qi, M.H. Goh, Y.Y. Ge, Z.C. Zhang, W. Niu, J.L. Wang, H.M. Zheng, H. Zhang, Heterophase fcc-2H-fcc gold nanorods, Nat. Commun. 11 (2020) 3293. doi: 10.1038/s41467-020-17068-w
|
[35] |
Y.Y. Ge, Z.Q. Huang, C.Y. Ling, B. Chen, G.G. Liu, M. Zhou, J.W. Liu, X. Zhang, H.F. Cheng, G.H. Liu, Y.H. Du, C.J. Sun, C.L. Tan, J.T. Huang, P.F. Yin, Z.X. Fan, Y. Chen, N.L. Yang, H. Zhang, Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles, J. Am. Chem. Soc. 142 (2020) 18971–18980. doi: 10.1021/jacs.0c09461
|
[36] |
Y. Chen, Z.X. Fan, J. Wang, C.Y. Ling, W.X. Niu, Z.Q. Huang, G.G. Liu, B. Chen, Z.C. Lai, X.Z. Liu, B. Li, Y. Zong, L. Gu, J.L. Wang, X. Wang, H. Zhang, Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phasedependent study, J. Am. Chem. Soc. 142 (2020) 12760–12766. doi: 10.1021/jacs.0c04981
|
[37] |
D. Yu, L. Gao, T.L. Sun, J.C. Guo, Y.L. Yuan, J.W. Zhang, M.F. Li, X.X. Li, M.C. Liu, C. Ma, Q.H. Liu, A.L. Pan, J.L. Yang, H.W. Huang, Strain-stabilized metastable face-centered tetragonal gold overlayer for efficient CO2 electroreduction, Nano Lett. 21 (2021) 1003–1010. doi: 10.1021/acs.nanolett.0c04051
|
[38] |
P.F. Yin, J.J. Fu, Q.B. Yun, B. Chen, G.G. Liu, L.J. Li, Z.Q. Huang, Y.Y. Ge, H. Zhang, Preparation of amorphous SnO2-encapsulated multi-phased crystalline Cu heterostructures for highly efficient CO2 reduction, Adv. Mater. 34 (2022) 2201114. doi: 10.1002/adma.202201114
|
[39] |
N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate, Adv. Energy Mater. 10 (2019) 1902338.
|
[40] |
S. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization, Angew. Chem. Int. Ed. 60 (2021) 20627–20648. doi: 10.1002/anie.202101818
|
[41] |
Y. Wang, J. Liu, G. Zheng, Designing copper-based catalysts for efficient carbon dioxide electroreduction, Adv. Mater. 33 (2021) e2005798. doi: 10.1002/adma.202005798
|
[42] |
Y. Zhao, J.J. Liang, C.Y. Wang, J.M. Ma, G.G. Wallace, Tunable and efficient Tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide, Adv. Energy Mater. 8 (2018) 1702524. doi: 10.1002/aenm.201702524
|
[43] |
H. Yang, N. Han, J. Deng, J.H. Wu, Y. Wang, Y.P. Hu, P. Ding, Y.F. Li, Y.G. Li, J. Lu, Selective CO2 reduction on 2D mesoporous Bi nanosheets, Adv. Energy Mater. 8 (2018) 1801536. doi: 10.1002/aenm.201801536
|
[44] |
X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C.L. Gan, F. Boey, C.A. Mirkin, H. Zhang, Synthesis of hexagonal close-packed gold nanostructures, Nat. Commun. 2 (2011) 292. doi: 10.1038/ncomms1291
|
[45] |
Z.X. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu, K.P. Ong, Y.A. Akimov, L. Wu, B. Li, J. Wu, Y. Huang, Q. Liu, C. Eng Png, C. Lip Gan, P.D. Yang, H. Zhang, Stabilization of 4H hexagonal phase in gold nanoribbons, Nat. Commun. 6 (2015) 7684. doi: 10.1038/ncomms8684
|
[46] |
S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, P.J. Kenis, Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns, J. Am. Chem. Soc. 139 (2017) 47–50. doi: 10.1021/jacs.6b10740
|
[47] |
J.Z. Liang, Y.Y. Ge, Z. He, Q.B. Yun, G.G. Liu, S.Y. Lu, L. Zhai, B. Huang, H. Zhang, Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials, Nano Res. 20 (2021) 1–21.
|
[48] |
K. Lu, L. Lu, S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science 324 (2009) 349–352. doi: 10.1126/science.1159610
|
[49] |
K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures, Nat. Rev. Mater. 1 (2016) 1–13.
|
[50] |
J.W. Wang, S. Narayanan, J.Y. Huang, Z. Zhang, T. Zhu, S.X. Mao, Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals, Nat. Commun. 4 (2013) 2340. doi: 10.1038/ncomms3340
|
[51] |
C. Choi, T. Cheng, M. Flores Espinosa, H. Fei, X. Duan, W.A. Goddard, Y. Huang, A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials, Adv. Mater. 31 (2019) 1805405. doi: 10.1002/adma.201805405
|
[52] |
F. Hu, S.C. Abeyweera, J. Yu, D. Zhang, Y. Wang, Q.M. Yan, Y.G. Sun, Quantifying electrocatalytic reduction of CO2 on twin boundaries, Chem 6 (2020) 3007–3021. doi: 10.1016/j.chempr.2020.07.026
|
[53] |
S.Y. Zhao, A.H. Liu, Y.H. Li, Y.Y. Wen, X.Q. Gao, Q.L. Chen, Boosting the electrocatalytic CO2 reduction reaction by nanostructured metal materials via defects engineering, Nanomaterials 12 (2022) 2389. doi: 10.3390/nano12142389
|
[54] |
A.R. Tao, S. Habas, P.D. Yang, Shape control of colloidal metal nanocrystals, Small 4 (2008) 310–325. doi: 10.1002/smll.200701295
|
[55] |
X.H. Ji, X.N. Song, J. Li, Y.B. Bai, W.S. Yang, X.G. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate, J. Am. Chem. Soc. 129 (2007) 13939–13948. doi: 10.1021/ja074447k
|
[56] |
J. Liu, J.T. Huang, W.X. Niu, C.L. Tan, H. Zhang, Unconventional-phase crystalline materials constructed from multiscale building blocks, Chem. Rev. 121 (2021) 5830–5888. doi: 10.1021/acs.chemrev.0c01047
|
[57] |
H.F. Cheng, N.L. Yang, Q.P. Lu, Z.C. Zhang, H. Zhang, Syntheses and properties of metal nanomaterials with novel crystal phases, Adv. Mater. 30 (2018) e1707189. doi: 10.1002/adma.201707189
|
[58] |
G. Wang, C. Ma, L. Zheng, Y. Chen, Colloidal synthesis of Au nanomaterials with a controlled morphology and crystal phase via the[Au(i)-oleylamine] complex, J. Mater. Chem. A 9 (2021) 19534–19553. doi: 10.1039/D1TA03666A
|
[59] |
R.R. da Silva, M. Yang, S.I. Choi, M. Chi, M. Luo, C. Zhang, Z.Y. Li, P.H. Camargo, S.J. Ribeiro, Y. Xia, Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method, ACS Nano 10 (2016) 7892–7900. doi: 10.1021/acsnano.6b03806
|
[60] |
Y. Chen, Z. Fan, Z. Luo, X. Liu, Z. Lai, B. Li, Y. Zong, L. Gu, H. Zhang, High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation, Adv. Mater. 29 (2017) 1701331. doi: 10.1002/adma.201701331
|
[61] |
Q. Yang, Q.L. Wu, Y. Liu, S.P. Luo, X.T. Wu, X.X. Zhao, H.Y. Zou, B.H. Long, W. Chen, Y.J. Liao, L.X. Li, P.K. Shen, L.L. Duan, Z.W. Quan, Novel Bi-doped amorphous SnOx nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials, Adv. Mater. 32 (2020) e2002822.
|
[62] |
M.B. Kale, R.A. Borse, A. Gomaa Abdelkader Mohamed, Y. Wang, Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion, Adv. Funct. Mater. 31 (2021) 2101313. doi: 10.1002/adfm.202101313
|
[63] |
W.W. Quan, Y.B. Lin, Y.J. Luo, Y.Y. Huang, Electrochemical CO2 reduction on Cu: synthesis-controlled structure preference and selectivity, Adv. Sci. 8 (2021) e2101597. doi: 10.1002/advs.202101597
|
[64] |
J. Medina-Ramos, R.C. Pupillo, T.P. Keane, J.L. DiMeglio, J. Rosenthal, Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared posttransition metal catalysts, J. Am. Chem. Soc. 137 (2015) 5021–5027. doi: 10.1021/ja5121088
|
[65] |
L. Han, B.Q. Tian, X.X. Gao, Y. Zhong, S.N. Wang, S.C. Song, Z.L. Wang, Y. Zhang, Y. Kuang, X. Sun, Copper nanowire with enriched high-index facets for highly selective CO2 reduction, SmartMat 3 (2022) 142–150. doi: 10.1002/smm2.1082
|
[66] |
N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, L. Wang Zhong, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science 316 (2007) 732–735. doi: 10.1126/science.1140484
|
[67] |
C. Xiao, B.A. Lu, P. Xue, N. Tian, Z.Y. Zhou, X. Lin, W.F. Lin, S.G. Sun, High-indexfacet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts, Joule 4 (2020) 2562–2598. doi: 10.1016/j.joule.2020.10.002
|
[68] |
L. Gao, X. Cui, C.D. Sewell, J. Li, Z. Lin, Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction, Chem. Soc. Rev. 50 (2021) 8428–8469. doi: 10.1039/D0CS00962H
|
[69] |
F.M. Liu, L. Zhang, L. Wang, F.Y. Cheng, The electrochemical tuning of transition metal-based materials for electrocatalysis, Electrochem. Energy Rev. 4 (2021) 146–168. doi: 10.1007/s41918-020-00089-w
|
[70] |
Z. Lu, K. Jiang, G.X. Chen, H.T. Wang, Y. Cui, Lithium electrochemical tuning for electrocatalysis, Adv. Mater. 30 (2018) e1800978. doi: 10.1002/adma.201800978
|
[71] |
S. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee, W. Chen, J. Cho, Y. Cui, Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation, Angew. Chem. Int. Ed. 55 (2016) 8741–8746.
|
[72] |
H.T. Wang, S.C. Xu, C. Tsai, Y.Z. Li, C. Liu, J. Zhao, Y.Y. Liu, H.Y. Yuan, F. Abild-Pedersen, B. Prinz Fritz, K. Nørskov Jens, Y. Cui, Direct and continuous strain control of catalysts with tunable battery electrode materials, Science 354 (2016) 1031–1036. doi: 10.1126/science.aaf7680
|
[73] |
Y.W. Lum, J.W. Ager, Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction, Nat. Catal. 2 (2018) 86–93.
|
[74] |
D. Ren, Y.L. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts, ACS Catal. 5 (2015) 2814–2821. doi: 10.1021/cs502128q
|
[75] |
W.C. Sheng, S. Kattel, S.Y. Yao, B.H. Yan, Z.X. Liang, C.J. Hawxhurst, Q.Y. Wu, J.G. Chen, Electrochemical reduction of CO2 to synthesis gas with controlled CO/ H2 ratios, Energy Environ. Sci. 10 (2017) 1180–1185. doi: 10.1039/C7EE00071E
|
[76] |
D.F. Gao, H. Zhou, F. Cai, D.N. Wang, Y.F. Hu, B. Jiang, W.B. Cai, X.Q. Chen, R. Si, F. Yang, S. Miao, J.G. Wang, G.X. Wang, X.H. Bao, Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles, Nano Res. 10 (2017) 2181–2191. doi: 10.1007/s12274-017-1514-6
|
[77] |
Y. Zhao, X. Tan, W.F. Yang, C. Jia, X.J. Chen, W.H. Ren, S.C. Smith, C. Zhao, Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 Reduction, Angew. Chem. Int. Ed. 59 (2020) 21493–21498. doi: 10.1002/anie.202009616
|
[78] |
J. Medina-Ramos, J.L. DiMeglio, J. Rosenthal, Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials, J. Am. Chem. Soc. 136 (2014) 8361–8367. doi: 10.1021/ja501923g
|
[79] |
Z.B. Hoffman, T.S. Gray, K.B. Moraveck, T.B. Gunnoe, G. Zangari, Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper-indium electrocatalysts, ACS Catal. 7 (2017) 5381–5390. doi: 10.1021/acscatal.7b01161
|
[80] |
C. Tang, J.J. Shi, X.W. Bai, A.Q. Hu, N.N. Xuan, Y.W. Yue, T. Ye, B. Liu, P.X. Li, P.Y. Zhuang, J.F. Shen, Y.Y. Liu, Z.Z. Sun, CO2 reduction on copper's twin boundary, ACS Catal. 10 (2020) 2026–2032. doi: 10.1021/acscatal.9b03814
|
[81] |
D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E.J. Crumlin, J.K. Norskov, P. Yang, Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles, J. Am. Chem. Soc. 139 (2017) 8329–8336. doi: 10.1021/jacs.7b03516
|
[82] |
L. Jia, M.Z. Sun, J. Xu, X. Zhao, R. Zhou, B.B. Pan, L. Wang, N. Han, B.L. Huang, Y.G. Li, Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals, Angew. Chem. Int. Ed. 133 (2021) 21909–21913. doi: 10.1002/ange.202109288
|
[83] |
H.P. Xu, D. Rebollar, H.Y. He, L. Chong, Y.Z. Liu, C. Liu, C.J. Sun, T. Li, J.V. Muntean, R.E. Winans, D.J. Liu, T. Xu, Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper, Nat. Energy 5 (2020) 623–632. doi: 10.1038/s41560-020-0666-x
|
[84] |
F. Hu, L. Yang, Y.W. Jiang, C.X. Duan, X.N. Wang, L.J. Zeng, X.F. Lv, D.L. Duan, Q. Liu, T.T. Kong, J. Jiang, R. Long, Y.J. Xiong, Ultrastable Cu catalyst for CO2 electroreduction to multicarbon liquid fuels by tuning C-C coupling with CuTi subsurface, Angew. Chem. Int. Ed. 60 (2021) 26122–26127. doi: 10.1002/anie.202110303
|
[85] |
G.M. Tomboc, S. Choi, T. Kwon, Y.J. Hwang, K. Lee, Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs, Adv. Mater. 32 (2020) 1908398. doi: 10.1002/adma.201908398
|
[86] |
L.M. Wang, W.L. Chen, D.D. Zhang, Y.P. Du, R. Amal, S.Z. Qiao, J.B. Wu, Z.Y. Yin, Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms, Chem. Soc. Rev. 48 (2019) 5310–5349. doi: 10.1039/C9CS00163H
|
[87] |
T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts, ACS Catal. 10 (2019) 1754–1768.
|
[88] |
X. Zhi, A. Vasileff, Y. Zheng, Y. Jiao, S.Z. Qiao, Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction, Energy Environ. Sci. 14 (2021) 3912–3930. doi: 10.1039/D1EE00740H
|
[89] |
A. Vasileff, C.C. Xu, Y. Jiao, Y. Zheng, S.Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction, Chem 4 (2018) 1809–1831. doi: 10.1016/j.chempr.2018.05.001
|
[90] |
C. Shi, H.A. Hansen, A.C. Lausche, J.K. Nørskov, Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces, Phys. Chem. Chem. Phys. 16 (2014) 4720–4727. doi: 10.1039/c3cp54822h
|
[91] |
Z. Yin, G.T.R. Palmore, S. Sun, Electrochemical reduction of CO2 catalyzed by metal nanocatalysts, Trends Chem. 1 (2019) 739–750. doi: 10.1016/j.trechm.2019.05.004
|
[92] |
J. Li, Z.Y. Wang, C. McCallum, Y. Xu, F.W. Li, Y.H. Wang, C.M. Gabardo, C.T. Dinh, T.T. Zhuang, L. Wang, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal. 2 (2019) 1124–1131. doi: 10.1038/s41929-019-0380-x
|
[93] |
T.T. Zhuang, Y.J. Pang, Z.Q. Liang, Z.Y. Wang, Y. Li, C.S. Tan, J. Li, C.T. Dinh, P. De Luna, P.L. Hsieh, Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide, Nat. Catal. 1 (2018) 946–951. doi: 10.1038/s41929-018-0168-4
|
[94] |
C. Kim, F. Dionigi, V. Beermann, X. Wang, T. Möller, P. Strasser, Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR), Adv. Mater. 31 (2019) 1805617. doi: 10.1002/adma.201805617
|
[95] |
Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, J. Chem. Soc., Faraday Trans. 85 (1989) 2309–2326.
|
[96] |
C. Sow, G. Mettela, G.U. Kulkarni, Noble metal nanomaterials with nontraditional crystal structures, Annu. Rev. Mater. Sci. 50 (2020) 345–370. doi: 10.1146/annurev-matsci-092519-103517
|
[97] |
H.X. Li, X.C. Zhou, W. Zhai, S.Y. Lu, J.Z. Liang, Z. He, H.W. Long, T.F. Xiong, H.Y. Sun, Q.Y. He, Z.X. Fan, H. Zhang, Phase engineering of nanomaterials for clean energy and catalytic applications, Adv. Energy Mater. 10 (2020) 2002019. doi: 10.1002/aenm.202002019
|
[98] |
S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis, Small Methods 3 (2019) 1800211. doi: 10.1002/smtd.201800211
|
[99] |
J. Kim, J.T. Song, H. Ryoo, J.G. Kim, S.Y. Chung, J. Oh, Morphology-controlled Au nanostructures for efficient and selective electrochemical CO2 reduction, J. Mater. Chem. A 6 (2018) 5119–5128. doi: 10.1039/C8TA01010B
|
[100] |
M. Liu, Y.J. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X.L. Zheng, C.T. Dinh, F.J. Fan, C.H. Cao, F.P.G. De Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Fillete, D. Sinton, S.O. Kelley, E.H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature 537 (2016) 382–386. doi: 10.1038/nature19060
|
[101] |
M. Liu, M.X. Liu, X.M. Wang, S.M. Kozlov, Z. Cao, P. De Luna, H.M. Li, X.Q. Qiu, K. Liu, J.H. Hu, Quantum-dot-derived catalysts for CO2 reduction reaction, Joule 3 (2019) 1703–1718. doi: 10.1016/j.joule.2019.05.010
|
[102] |
S.B. Liu, Z. Wang, H.B. Tao, T.F. Li, Q. Liu, Z.H. Xu, X.Z. Fu, J.L. Luo, Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO, Nano Energy 45 (2018) 456–462. doi: 10.1016/j.nanoen.2018.01.016
|
[103] |
M. Usman, M. Humayun, M.D. Garba, L. Ullah, Z. Zeb, A. Helal, M.H. Suliman, B.Y. Alfaifi, N. Iqbal, M. Abdinejad, Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels, Nanomaterials 11 (2021) 2029. doi: 10.3390/nano11082029
|
[104] |
J. Yin, Z.Y. Yin, J. Jin, M.Z. Sun, B.L. Huang, H.H. Lin, Z.H. Ma, M. Muzzio, M.Q. Shen, C. Yu, C.T. Dinh, H. Zhang, Y. Peng, p. Xi, C.H. Yan, S. Sun, A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal, J. Am. Chem. Soc. 143 (2021) 15335–15343. doi: 10.1021/jacs.1c06877
|
[105] |
S. Gao, Y. Lin, X.C. Jiao, Y.F. Sun, Q.Q. Luo, W.H. Zhang, D.Q. Li, J.L. Yang, Y. Xie, Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel, Nature 529 (2016) 68–71. doi: 10.1038/nature16455
|
[106] |
H.S. Jeon, I. Sinev, F. Scholten, N.J. Divins, I. Zegkinoglou, L. Pielsticker, B.R. Cuenya, Operando evolution of the structure and oxidation state of sizecontrolled Zn nanoparticles during CO2 electroreduction, J. Am. Chem. Soc. 140 (2018) 9383–9386. doi: 10.1021/jacs.8b05258
|
[107] |
D.H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim, S.I. Woo, Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst, Angew. Chem. Int. Ed. 128 (2016) 9443–9446. doi: 10.1002/ange.201602888
|
[108] |
M.G. Kibria, C.T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny, R. Quintero-Bermudez, M.B. Ross, O.S. Bushuyev, F.P. García de Arquer, P.D. Yang, A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons, Adv. Mater. 30 (2018) 1804867. doi: 10.1002/adma.201804867
|
[109] |
Y.J. Pang, T. Burdyny, C.T. Dinh, M.G. Kibria, J.Z. Fan, M. Liu, E.H. Sargent, D. Sinton, Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4, Green Chem. 19 (2017) 4023–4030. doi: 10.1039/C7GC01677H
|
[110] |
M.C. Luo, Z.Y. Wang, Y.C. Li, J. Li, F.W. Li, Y.W. Lum, D.H. Nam, B. Chen, J. Wicks, A. Xu, Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen, Nat. Commun. 10 (2019) 1–7. doi: 10.1038/s41467-018-07882-8
|
[111] |
W.L. Fu, Z. Liu, T.Y. Wang, J.S. Liang, S. Duan, L.F. Xie, J.T. Han, Q. Li, Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets, ACS Sustain. Chem. Eng. 8 (2020) 15223–15229. doi: 10.1021/acssuschemeng.0c04873
|
[112] |
W. Luc, X.B. Fu, J.J. Shi, J.J. Lv, M. Jouny, B.H. Ko, Y.B. Xu, Q. Tu, X.B. Hu, J.S. Wu, Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate, Nat. Catal. 2 (2019) 423–430. doi: 10.1038/s41929-019-0269-8
|
[113] |
Y.H. Wang, Z.Y. Wang, C.T. Dinh, J. Li, A. Ozden, M. Golam Kibria, A. Seifitokaldani, C.S. Tan, C.M. Gabardo, M.C. Luo, Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis, Nat. Catal. 3 (2020) 98–106. doi: 10.1038/s41929-019-0397-1
|
[114] |
W. Chen, E.D. Cubuk, M.M. Montemore, C. Reece, R.J. Madix, C.M. Friend, E. Kaxiras, A comparative ab initio study of anhydrous dehydrogenation of linearchain alcohols on Cu (110), J. Phys. Chem. C 122 (2018) 7806–7815. doi: 10.1021/acs.jpcc.8b01698
|
[115] |
M. Zhang, W.B. Wei, S.H. Zhou, D.D. Ma, A.H. Cao, X.T. Wu, Q.L. Zhu, Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability, Energy Environ. Sci. 14 (2021) 4998–5008. doi: 10.1039/D1EE01495A
|
[116] |
L. Fan, C. Xia, P. Zhu, Y.Y. Lu, H.T. Wang, Electrochemical CO2 reduction to highconcentration pure formic acid solutions in an all-solid-state reactor, Nat. Commun. 11 (2020) 1–9. doi: 10.1038/s41467-019-13993-7
|
[117] |
F.C. Lei, W. Liu, Y.F. Sun, J.Q. Xu, K.T. Liu, L. Liang, T. Yao, B.C. Pan, S.Q. Wei, Y. Xie, Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction, Nat. Commun. 7 (2016) 1–8.
|
[118] |
Y.F. Jia, F. Li, K. Fan, L.C. Sun, Cu-based bimetallic electrocatalysts for CO2 reduction, Adv. Powder Mater. 1 (2021) 100012.
|
[119] |
F. Cheng, X.X. Zhang, K.W. Mu, X. Ma, M.Y. Jiao, Z.H. Wang, P. Limpachanangkul, B. Chalermsinsuwan, Y. Gao, Y.H. Li, Recent progress of Sn-based derivative catalysts for electrochemical reduction of CO2, Energy Technol. 9 (2021) 2000799. doi: 10.1002/ente.202000799
|
[120] |
M.Y. Zu, L. Zhang, C.W. Wang, L.R. Zheng, H.G. Yang, Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction, J. Mater. Chem. A 6 (2018) 16804–16809. doi: 10.1039/C8TA05355C
|
[121] |
X.L. Zhang, X.H. Sun, S.X. Guo, A.M. Bond, J. Zhang, Formation of latticedislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential, Energy Environ. Sci. 12 (2019) 1334–1340. doi: 10.1039/C9EE00018F
|
[122] |
Y.B. Ma, J.L. Yu, M.Z. Sun, B. Chen, X.C. Zhou, C.L. Ye, Z.Q. Guan, W.H. Guo, G. Wang, S.Y. Lu, D.S. Xia, Y.H. Wang, Z. He, L. Zheng, Q.B. Yun, L.Q. Wang, J.W. Zhou, P.Y. Lu, J.W. Yin, Y.F. Zhao, Z.B. Luo, L. Zhai, L.W. Liao, Z.L. Zhu, R.Q. Ye, Y. Chen, Y. Lu, S.B. Xi, B.L. Huang, C.S. Lee, Z.X. Fan, Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction, Adv. Mater. 34 (2022) 2110607. doi: 10.1002/adma.202110607
|
[123] |
J. Wang, J. Yu, M. Sun, L. Liao, Q. Zhang, L. Zhai, X. Zhou, L. Li, G. Wang, F. Meng, Surface molecular functionalization of unusual phase metal nanomaterials for highly efficient electrochemical carbon dioxide reduction under industry-relevant current density, Small 18 (2022) 2106766. doi: 10.1002/smll.202106766
|
[124] |
L.H. Luo, M.L. Wang, Y. Cui, Z.Y. Chen, J.X. Wu, Y.L. Cao, J. Luo, Y.Z. Dai, W.X. Li, J. Bao, Surface iron species in palladium-iron intermetallic nanocrystals that promote and stabilize CO2 methanation, Angew. Chem. Int. Ed. 132 (2020) 14542–14550. doi: 10.1002/ange.201916032
|
[125] |
X. Zhang, Z.M. Luo, P. Yu, Y.Q. Cai, Y.H. Du, D.X. Wu, S. Gao, C.L. Tan, Z. Li, M.Q. Ren, T. Osipowicz, S.M. Chen, Z. Jiang, J. Li, Y. Huang, J. Yang, Y. Chen, C.Y. Ang, Y.L. Zhao, P. Wang, L. Song, X.J. Wu, Z. Liu, A. Borgna, H. Zhang, Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution, Nat. Catal. 1 (2018) 460–468. doi: 10.1038/s41929-018-0072-y
|
[126] |
Y.W. Lum, J.E. Huang, Z.Y. Wang, M.C. Luo, D.H. Nam, W.R. Leow, B. Chen, J. Wicks, Y.C. Li, Y.H. Wang, C.T. Dinh, J. Li, T.T. Zhuang, F. Li, T.K. Sham, D. Sinton, E.H. Sargent, Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol, Nat. Catal. 3 (2020) 14–22. doi: 10.1038/s41929-019-0386-4
|
[127] |
L.C. Pardo Pérez, D. Teschner, E. Willinger, A. Guiet, M. Driess, P. Strasser, A. Fischer, In situ formed "Sn1-XInX@In1-YSnYOZ" core@shell nanoparticles as electrocatalysts for CO2 reduction to formate, Adv. Funct. Mater. 31 (2021) 2103601. doi: 10.1002/adfm.202103601
|
[128] |
D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface, Nat. Mater. 18 (2019) 1222–1227. doi: 10.1038/s41563-019-0445-x
|
[129] |
S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials, J. Am. Chem. Soc. 136 (2014) 7845–7848. doi: 10.1021/ja5031529
|
[130] |
Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E.M. Nichols, K. Jeong, J.A. Reimer, A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction, J. Am. Chem. Soc. 138 (2016) 8120–8125. doi: 10.1021/jacs.6b02878
|
[131] |
Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A. Nie, T.C. Pu, M. Rehwoldt, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science 359 (2018) 1489–1494. doi: 10.1126/science.aan5412
|
[132] |
Y.G. Yao, Q. Dong, A. Brozena, J. Luo, J.W. Miao, M.F. Chi, C. Wang, I.G. Kevrekidis, Z.J. Ren, J. Greeley, High-entropy nanoparticles: synthesisstructure-property relationships and data-driven discovery, Science 376 (2022) eabn3103. doi: 10.1126/science.abn3103
|
[133] |
Y. Zhu, T.R. Kuo, Y.H. Li, M.Y. Qi, G. Chen, J.L. Wang, Y.J. Xu, H.M. Chen, Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy, Energy Environ. Sci. 14 (2021) 1928–1958. doi: 10.1039/D0EE03903A
|
[134] |
H. An, L. Wu, L.D. Mandemaker, S. Yang, J. de Ruiter, J.H. Wijten, J.C. Janssens, T. Hartman, W. van der Stam, B.M. Weckhuysen, Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper, Angew. Chem. Int. Ed. 60 (2021) 16576–16584. doi: 10.1002/anie.202104114
|
[135] |
Z. Sun, H. Yin, K. Liu, S. Cheng, G.K. Li, S. Kawi, H. Zhao, G. Jia, Z. Yin, Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction, SmartMat 3 (2022) 68–83. doi: 10.1002/smm2.1107
|