Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Zhai Yanjie, Han Peng, Yun Qinbai, Ge Yiyao, Zhang Xiao, Chen Ye, Zhang Hua. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction[J]. eScience, 2022, 2(5): 467-485. doi: 10.1016/j.esci.2022.09.002
Citation: Zhai Yanjie, Han Peng, Yun Qinbai, Ge Yiyao, Zhang Xiao, Chen Ye, Zhang Hua. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction[J]. eScience, 2022, 2(5): 467-485. doi: 10.1016/j.esci.2022.09.002

Phase engineering of metal nanocatalysts for electrochemical CO2 reduction

doi: 10.1016/j.esci.2022.09.002
More Information
  • The electrochemical CO2 reduction reaction (CO2RR) offers a green and sustainable process to convert CO2 into valuable chemical stocks and fuels. Metal is one of the most promising types of catalysts to drive an efficient and selective CO2RR. The catalytic performance of metal nanocatalysts is strongly dependent on their structural features. Recently, phase engineering of nanomaterials (PEN) has emerged as a prominent tactic to regulate the catalytic performance of metal nanocatalysts for the CO2RR. A broad range of metal nanocatalysts with conventional and unconventional crystal phases has been developed, and remarkable achievements have been made. This review summarizes the most recent developments in phase engineering of metal nanocatalysts for the electrochemical CO2RR. We first introduce the different crystal phases of metal nanocatalysts used in the CO2RR and then discuss various synthetic strategies for unconventional phases of metal nanocatalysts. After that, detailed discussions of metal nanocatalysts with conventional and unconventional phases, including amorphous phases, are presented. Finally, the challenges and perspectives in this emerging area are discussed.
  • ● Phase engineering of nanomaterials (PEN) emerges as a promising tactic to regulate their electrocatalytic performances.
    ● Challenges and perspectives towards phase engineering of metal nanocatalysts for electrochemical CO2 reduction were proposed.
    ● Recent development in phase engineering of metal nanocatalysts for electrochemical CO2 reduction reaction was summarized.
    X. Zhang, Y. Chen, and H. Zhang proposed the concept. Y. J. Zhai and P. Han co-wrote the manuscript. All authors revised the manuscript.
    Author contributions
    The authors declare no competing financial interests.
    Declaration of competing interest
    1 These authors contribute equally.
  • loading
  • [1]
    X.Y. Tan, C. Yu, Y.W. Ren, S. Cui, W.B. Li, J.S. Qiu, Recent advances in innovative strategies for the CO2 electroreduction reaction, Energy Environ. Sci. 14 (2021) 765–780. doi: 10.1039/D0EE02981E
    [2]
    R. Daiyan, W.H. Saputera, H. Masood, J. Leverett, X.Y. Lu, R. Amal, A Disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel, Adv. Energy Mater. 10 (2020) 1902106. doi: 10.1002/aenm.201902106
    [3]
    S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nat. Mater. 16 (2017) 16–22. doi: 10.1038/nmat4834
    [4]
    A. Rafiee, K.R. Khalilpour, D. Milani, M. Panahi, Trends in CO2 conversion and utilization: a review from process systems perspective, J. Environ. Chem. Eng. 6 (2018) 5771–5794. doi: 10.1016/j.jece.2018.08.065
    [5]
    Y. Zhang, S.X. Guo, X.L. Zhang, A.M. Bond, J. Zhang, Mechanistic understanding of the electrocatalytic CO2 reduction reaction-new developments based on advanced instrumental techniques, Nano Today 31 (2020) 100835. doi: 10.1016/j.nantod.2019.100835
    [6]
    J. Su, Y. Liu, Y. Song, L. Huang, W. Guo, X. Cao, Y. Dou, L. Cheng, G. Li, Q. Hu, Recent development of nanomaterials for carbon dioxide electroreduction, SmartMat 3 (2022) 35–53. doi: 10.1002/smm2.1106
    [7]
    J.J. Wang, X.P. Li, B.F. Cui, Z. Zhang, X.F. Hu, J. Ding, Y.D. Deng, X.P. Han, W.B. Hu, A review of non-noble metal-based electrocatalysts for CO2 electroreduction, Rare Metals 40 (2021) 3019–3037. doi: 10.1007/s12598-021-01736-x
    [8]
    X. Huang, J.L. Song, M.L. Hua, Z.B. Xie, S.S. Liu, T.B. Wu, G.Y. Yang, B.X. Han, Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxyme-thylfurfural by introducing oxygen vacancies, Green Chem. 22 (2020) 843–849. doi: 10.1039/C9GC03698A
    [9]
    J.J. Wang, G.J. Wang, J.F. Zhang, Y.D. Wang, H. Wu, X.R. Zheng, J. Ding, X.P. Han, Y.D. Deng, W.B. Hu, Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping, Angew. Chem. Int. Ed. 133 (2021) 7680–7684. doi: 10.1002/ange.202016022
    [10]
    M.H. Li, H.F. Wang, W. Luo, P.C. Sherrell, J. Chen, J.P. Yang, Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction, Adv. Mater. 32 (2020) 2001848. doi: 10.1002/adma.202001848
    [11]
    D.F. Gao, T.F. Liu, G.X. Wang, X.H. Bao, Structure sensitivity in single-atom catalysis toward CO2 electroreduction, ACS Energy Lett. 6 (2021) 713–727. doi: 10.1021/acsenergylett.0c02665
    [12]
    S. Liu, H.B. Yang, S.F. Hung, J. Ding, W.Z. Cai, L.H. Liu, J.J. Gao, X.N. Li, X.Y. Ren, Z.C. Kuang, Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst, Angew. Chem. Int. Ed. 59 (2020) 798–803. doi: 10.1002/anie.201911995
    [13]
    D.H. Nam, O.S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani, C.T. Dinh, F.P. García de Arquer, Y.H. Wang, Z.Q. Liang, A.H. Proppe, Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction, J. Am. Chem. Soc. 140 (2018) 11378–11386. doi: 10.1021/jacs.8b06407
    [14]
    D. Yang, X. Wang, 2D π-conjugated metal-organic frameworks for CO2 electroreduction, SmartMat 3 (2022) 54–67. doi: 10.1002/smm2.1102
    [15]
    X. Yang, Q.X. Li, S.Y. Chi, H.F. Li, Y.B. Huang, R. Cao, Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO2, SmartMat 3 (2022) 163–172. doi: 10.1002/smm2.1086
    [16]
    M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J.M. Cerrato, R. Haasch, Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, Science 353 (2016) 467–470. doi: 10.1126/science.aaf4767
    [17]
    M. Asadi, B. Kumar, A. Behranginia, B.A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun. 5 (2014) 1–8.
    [18]
    C. Chang, W. Chen, Y. Chen, et al., Recent progress on two-dimensional materials, Acta Phys. Chim. Sin. 37 (2021) 2108017.
    [19]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science 355 (2017) eaad4998. doi: 10.1126/science.aad4998
    [20]
    S.R. Hui, P. De Luna, How increasing proton and electron conduction benefits electrocatalytic CO2 reduction, Matter 4 (2021) 1555–1577. doi: 10.1016/j.matt.2021.02.021
    [21]
    S.L. Jiao, X.W. Fu, H.W. Huang, Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond, Adv. Funct. Mater. 32 (2021) 2107651.
    [22]
    Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo, M.T.M. Koper, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy 4 (2019) 732–745. doi: 10.1038/s41560-019-0450-y
    [23]
    A.Q. Chen, B.L. Lin, A simple framework for quantifying electrochemical CO2 fixation, Joule 2 (2018) 594–606. doi: 10.1016/j.joule.2018.02.003
    [24]
    D.M. Koshy, S.A. Akhade, A. Shugar, K. Abiose, J.W. Shi, S. Liang, J.S. Oakdale, S.E. Weitzner, J.B. Varley, E.B. Duoss, S.E. Baker, C. Hahn, Z. Bao, T.F. Jaramillo, Chemical modifications of Ag catalyst surfaces with imidazolium ionomers modulate H2 evolution rates during electrochemical CO2 reduction, J. Am. Chem. Soc. 143 (2021) 14712–14725. doi: 10.1021/jacs.1c06212
    [25]
    J.J. Fu, W.L. Zhu, Y. Chen, Z.Y. Yin, Y.Y. Li, J. Liu, H.Y. Zhang, J.J. Zhu, S.H. Sun, Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2, Angew. Chem. Int. Ed. 131 (2019) 14238–14241. doi: 10.1002/ange.201905318
    [26]
    Q. Chang, J. Kim, J.H. Lee, S. Kattel, J.G. Chen, S.I. Choi, Z. Chen, Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes, Small 16 (2020) e2005305. doi: 10.1002/smll.202005305
    [27]
    H. Xie, T.Y. Wang, J.S. Liang, Q. Li, S.H. Sun, Cu-based nanocatalysts for electrochemical reduction of CO2, Nano Today 21 (2018) 41–54. doi: 10.1016/j.nantod.2018.05.001
    [28]
    Y. Chen, Z.C. Lai, X. Zhang, Z.X. Fan, Q.Y. He, C.L. Tan, H. Zhang, Phase engineering of nanomaterials, Nat. Rev. Chem. 4 (2020) 243–256. doi: 10.1038/s41570-020-0173-4
    [29]
    W.Y. Deng, L. Zhang, H. Dong, X.X. Chang, T. Wang, J.L. Gong, Achieving convenient CO2 electroreduction and photovoltage in tandem using potentialinsensitive disordered Ag nanoparticles, Chem. Sci. 9 (2018) 6599–6604. doi: 10.1039/C8SC02576B
    [30]
    X.L. Zheng, P. De Luna, F.P.G. de Arquer, B. Zhang, N. Becknell, M.B. Ross, Y. Li, M.N. Banis, Y.Z. Li, M. Liu, O. Voznyy, C.T. Dinh, T. Zhuang, P. Stadler, Y. Cui, X. Du, P. Yang, E.H. Sargent, Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate, Joule 1 (2017) 794–805. doi: 10.1016/j.joule.2017.09.014
    [31]
    W. Luc, C. Collins, S.W. Wang, H.L. Xin, K. He, Y.J. Kang, F. Jiao, Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction, J. Am. Chem. Soc. 139 (2017) 1885–1893. doi: 10.1021/jacs.6b10435
    [32]
    Y.X. Duan, F.L. Meng, K.H. Liu, S.S. Yi, S.J. Li, J.M. Yan, Q. Jiang, Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high Faradaic efficiencies, Adv. Mater. 30 (2018) e1706194. doi: 10.1002/adma.201706194
    [33]
    Y.X. Wang, C.Y. Li, Z.X. Fan, Y. Chen, X. Li, L. Cao, C.H. Wang, L. Wang, D. Su, H. Zhang, T. Mueller, C. Wang, Undercoordinated active sites on 4H gold nanostructures for CO2 reduction, Nano Lett. 20 (2020) 8074–8080. doi: 10.1021/acs.nanolett.0c03073
    [34]
    Z.X. Fan, M. Bosman, Z.Q. Huang, Y. Chen, C.Y. Ling, L. Wu, Y.A. Akimov, R. Laskowski, B. Chen, P. Ercius, J. Zhang, X.Y. Qi, M.H. Goh, Y.Y. Ge, Z.C. Zhang, W. Niu, J.L. Wang, H.M. Zheng, H. Zhang, Heterophase fcc-2H-fcc gold nanorods, Nat. Commun. 11 (2020) 3293. doi: 10.1038/s41467-020-17068-w
    [35]
    Y.Y. Ge, Z.Q. Huang, C.Y. Ling, B. Chen, G.G. Liu, M. Zhou, J.W. Liu, X. Zhang, H.F. Cheng, G.H. Liu, Y.H. Du, C.J. Sun, C.L. Tan, J.T. Huang, P.F. Yin, Z.X. Fan, Y. Chen, N.L. Yang, H. Zhang, Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles, J. Am. Chem. Soc. 142 (2020) 18971–18980. doi: 10.1021/jacs.0c09461
    [36]
    Y. Chen, Z.X. Fan, J. Wang, C.Y. Ling, W.X. Niu, Z.Q. Huang, G.G. Liu, B. Chen, Z.C. Lai, X.Z. Liu, B. Li, Y. Zong, L. Gu, J.L. Wang, X. Wang, H. Zhang, Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phasedependent study, J. Am. Chem. Soc. 142 (2020) 12760–12766. doi: 10.1021/jacs.0c04981
    [37]
    D. Yu, L. Gao, T.L. Sun, J.C. Guo, Y.L. Yuan, J.W. Zhang, M.F. Li, X.X. Li, M.C. Liu, C. Ma, Q.H. Liu, A.L. Pan, J.L. Yang, H.W. Huang, Strain-stabilized metastable face-centered tetragonal gold overlayer for efficient CO2 electroreduction, Nano Lett. 21 (2021) 1003–1010. doi: 10.1021/acs.nanolett.0c04051
    [38]
    P.F. Yin, J.J. Fu, Q.B. Yun, B. Chen, G.G. Liu, L.J. Li, Z.Q. Huang, Y.Y. Ge, H. Zhang, Preparation of amorphous SnO2-encapsulated multi-phased crystalline Cu heterostructures for highly efficient CO2 reduction, Adv. Mater. 34 (2022) 2201114. doi: 10.1002/adma.202201114
    [39]
    N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate, Adv. Energy Mater. 10 (2019) 1902338.
    [40]
    S. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization, Angew. Chem. Int. Ed. 60 (2021) 20627–20648. doi: 10.1002/anie.202101818
    [41]
    Y. Wang, J. Liu, G. Zheng, Designing copper-based catalysts for efficient carbon dioxide electroreduction, Adv. Mater. 33 (2021) e2005798. doi: 10.1002/adma.202005798
    [42]
    Y. Zhao, J.J. Liang, C.Y. Wang, J.M. Ma, G.G. Wallace, Tunable and efficient Tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide, Adv. Energy Mater. 8 (2018) 1702524. doi: 10.1002/aenm.201702524
    [43]
    H. Yang, N. Han, J. Deng, J.H. Wu, Y. Wang, Y.P. Hu, P. Ding, Y.F. Li, Y.G. Li, J. Lu, Selective CO2 reduction on 2D mesoporous Bi nanosheets, Adv. Energy Mater. 8 (2018) 1801536. doi: 10.1002/aenm.201801536
    [44]
    X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C.L. Gan, F. Boey, C.A. Mirkin, H. Zhang, Synthesis of hexagonal close-packed gold nanostructures, Nat. Commun. 2 (2011) 292. doi: 10.1038/ncomms1291
    [45]
    Z.X. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu, K.P. Ong, Y.A. Akimov, L. Wu, B. Li, J. Wu, Y. Huang, Q. Liu, C. Eng Png, C. Lip Gan, P.D. Yang, H. Zhang, Stabilization of 4H hexagonal phase in gold nanoribbons, Nat. Commun. 6 (2015) 7684. doi: 10.1038/ncomms8684
    [46]
    S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, P.J. Kenis, Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns, J. Am. Chem. Soc. 139 (2017) 47–50. doi: 10.1021/jacs.6b10740
    [47]
    J.Z. Liang, Y.Y. Ge, Z. He, Q.B. Yun, G.G. Liu, S.Y. Lu, L. Zhai, B. Huang, H. Zhang, Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials, Nano Res. 20 (2021) 1–21.
    [48]
    K. Lu, L. Lu, S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science 324 (2009) 349–352. doi: 10.1126/science.1159610
    [49]
    K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures, Nat. Rev. Mater. 1 (2016) 1–13.
    [50]
    J.W. Wang, S. Narayanan, J.Y. Huang, Z. Zhang, T. Zhu, S.X. Mao, Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals, Nat. Commun. 4 (2013) 2340. doi: 10.1038/ncomms3340
    [51]
    C. Choi, T. Cheng, M. Flores Espinosa, H. Fei, X. Duan, W.A. Goddard, Y. Huang, A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials, Adv. Mater. 31 (2019) 1805405. doi: 10.1002/adma.201805405
    [52]
    F. Hu, S.C. Abeyweera, J. Yu, D. Zhang, Y. Wang, Q.M. Yan, Y.G. Sun, Quantifying electrocatalytic reduction of CO2 on twin boundaries, Chem 6 (2020) 3007–3021. doi: 10.1016/j.chempr.2020.07.026
    [53]
    S.Y. Zhao, A.H. Liu, Y.H. Li, Y.Y. Wen, X.Q. Gao, Q.L. Chen, Boosting the electrocatalytic CO2 reduction reaction by nanostructured metal materials via defects engineering, Nanomaterials 12 (2022) 2389. doi: 10.3390/nano12142389
    [54]
    A.R. Tao, S. Habas, P.D. Yang, Shape control of colloidal metal nanocrystals, Small 4 (2008) 310–325. doi: 10.1002/smll.200701295
    [55]
    X.H. Ji, X.N. Song, J. Li, Y.B. Bai, W.S. Yang, X.G. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate, J. Am. Chem. Soc. 129 (2007) 13939–13948. doi: 10.1021/ja074447k
    [56]
    J. Liu, J.T. Huang, W.X. Niu, C.L. Tan, H. Zhang, Unconventional-phase crystalline materials constructed from multiscale building blocks, Chem. Rev. 121 (2021) 5830–5888. doi: 10.1021/acs.chemrev.0c01047
    [57]
    H.F. Cheng, N.L. Yang, Q.P. Lu, Z.C. Zhang, H. Zhang, Syntheses and properties of metal nanomaterials with novel crystal phases, Adv. Mater. 30 (2018) e1707189. doi: 10.1002/adma.201707189
    [58]
    G. Wang, C. Ma, L. Zheng, Y. Chen, Colloidal synthesis of Au nanomaterials with a controlled morphology and crystal phase via the[Au(i)-oleylamine] complex, J. Mater. Chem. A 9 (2021) 19534–19553. doi: 10.1039/D1TA03666A
    [59]
    R.R. da Silva, M. Yang, S.I. Choi, M. Chi, M. Luo, C. Zhang, Z.Y. Li, P.H. Camargo, S.J. Ribeiro, Y. Xia, Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method, ACS Nano 10 (2016) 7892–7900. doi: 10.1021/acsnano.6b03806
    [60]
    Y. Chen, Z. Fan, Z. Luo, X. Liu, Z. Lai, B. Li, Y. Zong, L. Gu, H. Zhang, High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation, Adv. Mater. 29 (2017) 1701331. doi: 10.1002/adma.201701331
    [61]
    Q. Yang, Q.L. Wu, Y. Liu, S.P. Luo, X.T. Wu, X.X. Zhao, H.Y. Zou, B.H. Long, W. Chen, Y.J. Liao, L.X. Li, P.K. Shen, L.L. Duan, Z.W. Quan, Novel Bi-doped amorphous SnOx nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials, Adv. Mater. 32 (2020) e2002822.
    [62]
    M.B. Kale, R.A. Borse, A. Gomaa Abdelkader Mohamed, Y. Wang, Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion, Adv. Funct. Mater. 31 (2021) 2101313. doi: 10.1002/adfm.202101313
    [63]
    W.W. Quan, Y.B. Lin, Y.J. Luo, Y.Y. Huang, Electrochemical CO2 reduction on Cu: synthesis-controlled structure preference and selectivity, Adv. Sci. 8 (2021) e2101597. doi: 10.1002/advs.202101597
    [64]
    J. Medina-Ramos, R.C. Pupillo, T.P. Keane, J.L. DiMeglio, J. Rosenthal, Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared posttransition metal catalysts, J. Am. Chem. Soc. 137 (2015) 5021–5027. doi: 10.1021/ja5121088
    [65]
    L. Han, B.Q. Tian, X.X. Gao, Y. Zhong, S.N. Wang, S.C. Song, Z.L. Wang, Y. Zhang, Y. Kuang, X. Sun, Copper nanowire with enriched high-index facets for highly selective CO2 reduction, SmartMat 3 (2022) 142–150. doi: 10.1002/smm2.1082
    [66]
    N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, L. Wang Zhong, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science 316 (2007) 732–735. doi: 10.1126/science.1140484
    [67]
    C. Xiao, B.A. Lu, P. Xue, N. Tian, Z.Y. Zhou, X. Lin, W.F. Lin, S.G. Sun, High-indexfacet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts, Joule 4 (2020) 2562–2598. doi: 10.1016/j.joule.2020.10.002
    [68]
    L. Gao, X. Cui, C.D. Sewell, J. Li, Z. Lin, Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction, Chem. Soc. Rev. 50 (2021) 8428–8469. doi: 10.1039/D0CS00962H
    [69]
    F.M. Liu, L. Zhang, L. Wang, F.Y. Cheng, The electrochemical tuning of transition metal-based materials for electrocatalysis, Electrochem. Energy Rev. 4 (2021) 146–168. doi: 10.1007/s41918-020-00089-w
    [70]
    Z. Lu, K. Jiang, G.X. Chen, H.T. Wang, Y. Cui, Lithium electrochemical tuning for electrocatalysis, Adv. Mater. 30 (2018) e1800978. doi: 10.1002/adma.201800978
    [71]
    S. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee, W. Chen, J. Cho, Y. Cui, Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation, Angew. Chem. Int. Ed. 55 (2016) 8741–8746.
    [72]
    H.T. Wang, S.C. Xu, C. Tsai, Y.Z. Li, C. Liu, J. Zhao, Y.Y. Liu, H.Y. Yuan, F. Abild-Pedersen, B. Prinz Fritz, K. Nørskov Jens, Y. Cui, Direct and continuous strain control of catalysts with tunable battery electrode materials, Science 354 (2016) 1031–1036. doi: 10.1126/science.aaf7680
    [73]
    Y.W. Lum, J.W. Ager, Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction, Nat. Catal. 2 (2018) 86–93.
    [74]
    D. Ren, Y.L. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts, ACS Catal. 5 (2015) 2814–2821. doi: 10.1021/cs502128q
    [75]
    W.C. Sheng, S. Kattel, S.Y. Yao, B.H. Yan, Z.X. Liang, C.J. Hawxhurst, Q.Y. Wu, J.G. Chen, Electrochemical reduction of CO2 to synthesis gas with controlled CO/ H2 ratios, Energy Environ. Sci. 10 (2017) 1180–1185. doi: 10.1039/C7EE00071E
    [76]
    D.F. Gao, H. Zhou, F. Cai, D.N. Wang, Y.F. Hu, B. Jiang, W.B. Cai, X.Q. Chen, R. Si, F. Yang, S. Miao, J.G. Wang, G.X. Wang, X.H. Bao, Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles, Nano Res. 10 (2017) 2181–2191. doi: 10.1007/s12274-017-1514-6
    [77]
    Y. Zhao, X. Tan, W.F. Yang, C. Jia, X.J. Chen, W.H. Ren, S.C. Smith, C. Zhao, Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 Reduction, Angew. Chem. Int. Ed. 59 (2020) 21493–21498. doi: 10.1002/anie.202009616
    [78]
    J. Medina-Ramos, J.L. DiMeglio, J. Rosenthal, Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials, J. Am. Chem. Soc. 136 (2014) 8361–8367. doi: 10.1021/ja501923g
    [79]
    Z.B. Hoffman, T.S. Gray, K.B. Moraveck, T.B. Gunnoe, G. Zangari, Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper-indium electrocatalysts, ACS Catal. 7 (2017) 5381–5390. doi: 10.1021/acscatal.7b01161
    [80]
    C. Tang, J.J. Shi, X.W. Bai, A.Q. Hu, N.N. Xuan, Y.W. Yue, T. Ye, B. Liu, P.X. Li, P.Y. Zhuang, J.F. Shen, Y.Y. Liu, Z.Z. Sun, CO2 reduction on copper's twin boundary, ACS Catal. 10 (2020) 2026–2032. doi: 10.1021/acscatal.9b03814
    [81]
    D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E.J. Crumlin, J.K. Norskov, P. Yang, Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles, J. Am. Chem. Soc. 139 (2017) 8329–8336. doi: 10.1021/jacs.7b03516
    [82]
    L. Jia, M.Z. Sun, J. Xu, X. Zhao, R. Zhou, B.B. Pan, L. Wang, N. Han, B.L. Huang, Y.G. Li, Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals, Angew. Chem. Int. Ed. 133 (2021) 21909–21913. doi: 10.1002/ange.202109288
    [83]
    H.P. Xu, D. Rebollar, H.Y. He, L. Chong, Y.Z. Liu, C. Liu, C.J. Sun, T. Li, J.V. Muntean, R.E. Winans, D.J. Liu, T. Xu, Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper, Nat. Energy 5 (2020) 623–632. doi: 10.1038/s41560-020-0666-x
    [84]
    F. Hu, L. Yang, Y.W. Jiang, C.X. Duan, X.N. Wang, L.J. Zeng, X.F. Lv, D.L. Duan, Q. Liu, T.T. Kong, J. Jiang, R. Long, Y.J. Xiong, Ultrastable Cu catalyst for CO2 electroreduction to multicarbon liquid fuels by tuning C-C coupling with CuTi subsurface, Angew. Chem. Int. Ed. 60 (2021) 26122–26127. doi: 10.1002/anie.202110303
    [85]
    G.M. Tomboc, S. Choi, T. Kwon, Y.J. Hwang, K. Lee, Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs, Adv. Mater. 32 (2020) 1908398. doi: 10.1002/adma.201908398
    [86]
    L.M. Wang, W.L. Chen, D.D. Zhang, Y.P. Du, R. Amal, S.Z. Qiao, J.B. Wu, Z.Y. Yin, Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms, Chem. Soc. Rev. 48 (2019) 5310–5349. doi: 10.1039/C9CS00163H
    [87]
    T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts, ACS Catal. 10 (2019) 1754–1768.
    [88]
    X. Zhi, A. Vasileff, Y. Zheng, Y. Jiao, S.Z. Qiao, Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction, Energy Environ. Sci. 14 (2021) 3912–3930. doi: 10.1039/D1EE00740H
    [89]
    A. Vasileff, C.C. Xu, Y. Jiao, Y. Zheng, S.Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction, Chem 4 (2018) 1809–1831. doi: 10.1016/j.chempr.2018.05.001
    [90]
    C. Shi, H.A. Hansen, A.C. Lausche, J.K. Nørskov, Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces, Phys. Chem. Chem. Phys. 16 (2014) 4720–4727. doi: 10.1039/c3cp54822h
    [91]
    Z. Yin, G.T.R. Palmore, S. Sun, Electrochemical reduction of CO2 catalyzed by metal nanocatalysts, Trends Chem. 1 (2019) 739–750. doi: 10.1016/j.trechm.2019.05.004
    [92]
    J. Li, Z.Y. Wang, C. McCallum, Y. Xu, F.W. Li, Y.H. Wang, C.M. Gabardo, C.T. Dinh, T.T. Zhuang, L. Wang, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal. 2 (2019) 1124–1131. doi: 10.1038/s41929-019-0380-x
    [93]
    T.T. Zhuang, Y.J. Pang, Z.Q. Liang, Z.Y. Wang, Y. Li, C.S. Tan, J. Li, C.T. Dinh, P. De Luna, P.L. Hsieh, Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide, Nat. Catal. 1 (2018) 946–951. doi: 10.1038/s41929-018-0168-4
    [94]
    C. Kim, F. Dionigi, V. Beermann, X. Wang, T. Möller, P. Strasser, Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR), Adv. Mater. 31 (2019) 1805617. doi: 10.1002/adma.201805617
    [95]
    Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, J. Chem. Soc., Faraday Trans. 85 (1989) 2309–2326.
    [96]
    C. Sow, G. Mettela, G.U. Kulkarni, Noble metal nanomaterials with nontraditional crystal structures, Annu. Rev. Mater. Sci. 50 (2020) 345–370. doi: 10.1146/annurev-matsci-092519-103517
    [97]
    H.X. Li, X.C. Zhou, W. Zhai, S.Y. Lu, J.Z. Liang, Z. He, H.W. Long, T.F. Xiong, H.Y. Sun, Q.Y. He, Z.X. Fan, H. Zhang, Phase engineering of nanomaterials for clean energy and catalytic applications, Adv. Energy Mater. 10 (2020) 2002019. doi: 10.1002/aenm.202002019
    [98]
    S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis, Small Methods 3 (2019) 1800211. doi: 10.1002/smtd.201800211
    [99]
    J. Kim, J.T. Song, H. Ryoo, J.G. Kim, S.Y. Chung, J. Oh, Morphology-controlled Au nanostructures for efficient and selective electrochemical CO2 reduction, J. Mater. Chem. A 6 (2018) 5119–5128. doi: 10.1039/C8TA01010B
    [100]
    M. Liu, Y.J. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X.L. Zheng, C.T. Dinh, F.J. Fan, C.H. Cao, F.P.G. De Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Fillete, D. Sinton, S.O. Kelley, E.H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature 537 (2016) 382–386. doi: 10.1038/nature19060
    [101]
    M. Liu, M.X. Liu, X.M. Wang, S.M. Kozlov, Z. Cao, P. De Luna, H.M. Li, X.Q. Qiu, K. Liu, J.H. Hu, Quantum-dot-derived catalysts for CO2 reduction reaction, Joule 3 (2019) 1703–1718. doi: 10.1016/j.joule.2019.05.010
    [102]
    S.B. Liu, Z. Wang, H.B. Tao, T.F. Li, Q. Liu, Z.H. Xu, X.Z. Fu, J.L. Luo, Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO, Nano Energy 45 (2018) 456–462. doi: 10.1016/j.nanoen.2018.01.016
    [103]
    M. Usman, M. Humayun, M.D. Garba, L. Ullah, Z. Zeb, A. Helal, M.H. Suliman, B.Y. Alfaifi, N. Iqbal, M. Abdinejad, Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels, Nanomaterials 11 (2021) 2029. doi: 10.3390/nano11082029
    [104]
    J. Yin, Z.Y. Yin, J. Jin, M.Z. Sun, B.L. Huang, H.H. Lin, Z.H. Ma, M. Muzzio, M.Q. Shen, C. Yu, C.T. Dinh, H. Zhang, Y. Peng, p. Xi, C.H. Yan, S. Sun, A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal, J. Am. Chem. Soc. 143 (2021) 15335–15343. doi: 10.1021/jacs.1c06877
    [105]
    S. Gao, Y. Lin, X.C. Jiao, Y.F. Sun, Q.Q. Luo, W.H. Zhang, D.Q. Li, J.L. Yang, Y. Xie, Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel, Nature 529 (2016) 68–71. doi: 10.1038/nature16455
    [106]
    H.S. Jeon, I. Sinev, F. Scholten, N.J. Divins, I. Zegkinoglou, L. Pielsticker, B.R. Cuenya, Operando evolution of the structure and oxidation state of sizecontrolled Zn nanoparticles during CO2 electroreduction, J. Am. Chem. Soc. 140 (2018) 9383–9386. doi: 10.1021/jacs.8b05258
    [107]
    D.H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim, S.I. Woo, Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst, Angew. Chem. Int. Ed. 128 (2016) 9443–9446. doi: 10.1002/ange.201602888
    [108]
    M.G. Kibria, C.T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny, R. Quintero-Bermudez, M.B. Ross, O.S. Bushuyev, F.P. García de Arquer, P.D. Yang, A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons, Adv. Mater. 30 (2018) 1804867. doi: 10.1002/adma.201804867
    [109]
    Y.J. Pang, T. Burdyny, C.T. Dinh, M.G. Kibria, J.Z. Fan, M. Liu, E.H. Sargent, D. Sinton, Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4, Green Chem. 19 (2017) 4023–4030. doi: 10.1039/C7GC01677H
    [110]
    M.C. Luo, Z.Y. Wang, Y.C. Li, J. Li, F.W. Li, Y.W. Lum, D.H. Nam, B. Chen, J. Wicks, A. Xu, Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen, Nat. Commun. 10 (2019) 1–7. doi: 10.1038/s41467-018-07882-8
    [111]
    W.L. Fu, Z. Liu, T.Y. Wang, J.S. Liang, S. Duan, L.F. Xie, J.T. Han, Q. Li, Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets, ACS Sustain. Chem. Eng. 8 (2020) 15223–15229. doi: 10.1021/acssuschemeng.0c04873
    [112]
    W. Luc, X.B. Fu, J.J. Shi, J.J. Lv, M. Jouny, B.H. Ko, Y.B. Xu, Q. Tu, X.B. Hu, J.S. Wu, Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate, Nat. Catal. 2 (2019) 423–430. doi: 10.1038/s41929-019-0269-8
    [113]
    Y.H. Wang, Z.Y. Wang, C.T. Dinh, J. Li, A. Ozden, M. Golam Kibria, A. Seifitokaldani, C.S. Tan, C.M. Gabardo, M.C. Luo, Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis, Nat. Catal. 3 (2020) 98–106. doi: 10.1038/s41929-019-0397-1
    [114]
    W. Chen, E.D. Cubuk, M.M. Montemore, C. Reece, R.J. Madix, C.M. Friend, E. Kaxiras, A comparative ab initio study of anhydrous dehydrogenation of linearchain alcohols on Cu (110), J. Phys. Chem. C 122 (2018) 7806–7815. doi: 10.1021/acs.jpcc.8b01698
    [115]
    M. Zhang, W.B. Wei, S.H. Zhou, D.D. Ma, A.H. Cao, X.T. Wu, Q.L. Zhu, Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability, Energy Environ. Sci. 14 (2021) 4998–5008. doi: 10.1039/D1EE01495A
    [116]
    L. Fan, C. Xia, P. Zhu, Y.Y. Lu, H.T. Wang, Electrochemical CO2 reduction to highconcentration pure formic acid solutions in an all-solid-state reactor, Nat. Commun. 11 (2020) 1–9. doi: 10.1038/s41467-019-13993-7
    [117]
    F.C. Lei, W. Liu, Y.F. Sun, J.Q. Xu, K.T. Liu, L. Liang, T. Yao, B.C. Pan, S.Q. Wei, Y. Xie, Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction, Nat. Commun. 7 (2016) 1–8.
    [118]
    Y.F. Jia, F. Li, K. Fan, L.C. Sun, Cu-based bimetallic electrocatalysts for CO2 reduction, Adv. Powder Mater. 1 (2021) 100012.
    [119]
    F. Cheng, X.X. Zhang, K.W. Mu, X. Ma, M.Y. Jiao, Z.H. Wang, P. Limpachanangkul, B. Chalermsinsuwan, Y. Gao, Y.H. Li, Recent progress of Sn-based derivative catalysts for electrochemical reduction of CO2, Energy Technol. 9 (2021) 2000799. doi: 10.1002/ente.202000799
    [120]
    M.Y. Zu, L. Zhang, C.W. Wang, L.R. Zheng, H.G. Yang, Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction, J. Mater. Chem. A 6 (2018) 16804–16809. doi: 10.1039/C8TA05355C
    [121]
    X.L. Zhang, X.H. Sun, S.X. Guo, A.M. Bond, J. Zhang, Formation of latticedislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential, Energy Environ. Sci. 12 (2019) 1334–1340. doi: 10.1039/C9EE00018F
    [122]
    Y.B. Ma, J.L. Yu, M.Z. Sun, B. Chen, X.C. Zhou, C.L. Ye, Z.Q. Guan, W.H. Guo, G. Wang, S.Y. Lu, D.S. Xia, Y.H. Wang, Z. He, L. Zheng, Q.B. Yun, L.Q. Wang, J.W. Zhou, P.Y. Lu, J.W. Yin, Y.F. Zhao, Z.B. Luo, L. Zhai, L.W. Liao, Z.L. Zhu, R.Q. Ye, Y. Chen, Y. Lu, S.B. Xi, B.L. Huang, C.S. Lee, Z.X. Fan, Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction, Adv. Mater. 34 (2022) 2110607. doi: 10.1002/adma.202110607
    [123]
    J. Wang, J. Yu, M. Sun, L. Liao, Q. Zhang, L. Zhai, X. Zhou, L. Li, G. Wang, F. Meng, Surface molecular functionalization of unusual phase metal nanomaterials for highly efficient electrochemical carbon dioxide reduction under industry-relevant current density, Small 18 (2022) 2106766. doi: 10.1002/smll.202106766
    [124]
    L.H. Luo, M.L. Wang, Y. Cui, Z.Y. Chen, J.X. Wu, Y.L. Cao, J. Luo, Y.Z. Dai, W.X. Li, J. Bao, Surface iron species in palladium-iron intermetallic nanocrystals that promote and stabilize CO2 methanation, Angew. Chem. Int. Ed. 132 (2020) 14542–14550. doi: 10.1002/ange.201916032
    [125]
    X. Zhang, Z.M. Luo, P. Yu, Y.Q. Cai, Y.H. Du, D.X. Wu, S. Gao, C.L. Tan, Z. Li, M.Q. Ren, T. Osipowicz, S.M. Chen, Z. Jiang, J. Li, Y. Huang, J. Yang, Y. Chen, C.Y. Ang, Y.L. Zhao, P. Wang, L. Song, X.J. Wu, Z. Liu, A. Borgna, H. Zhang, Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution, Nat. Catal. 1 (2018) 460–468. doi: 10.1038/s41929-018-0072-y
    [126]
    Y.W. Lum, J.E. Huang, Z.Y. Wang, M.C. Luo, D.H. Nam, W.R. Leow, B. Chen, J. Wicks, Y.C. Li, Y.H. Wang, C.T. Dinh, J. Li, T.T. Zhuang, F. Li, T.K. Sham, D. Sinton, E.H. Sargent, Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol, Nat. Catal. 3 (2020) 14–22. doi: 10.1038/s41929-019-0386-4
    [127]
    L.C. Pardo Pérez, D. Teschner, E. Willinger, A. Guiet, M. Driess, P. Strasser, A. Fischer, In situ formed "Sn1-XInX@In1-YSnYOZ" core@shell nanoparticles as electrocatalysts for CO2 reduction to formate, Adv. Funct. Mater. 31 (2021) 2103601. doi: 10.1002/adfm.202103601
    [128]
    D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface, Nat. Mater. 18 (2019) 1222–1227. doi: 10.1038/s41563-019-0445-x
    [129]
    S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials, J. Am. Chem. Soc. 136 (2014) 7845–7848. doi: 10.1021/ja5031529
    [130]
    Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E.M. Nichols, K. Jeong, J.A. Reimer, A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction, J. Am. Chem. Soc. 138 (2016) 8120–8125. doi: 10.1021/jacs.6b02878
    [131]
    Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A. Nie, T.C. Pu, M. Rehwoldt, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science 359 (2018) 1489–1494. doi: 10.1126/science.aan5412
    [132]
    Y.G. Yao, Q. Dong, A. Brozena, J. Luo, J.W. Miao, M.F. Chi, C. Wang, I.G. Kevrekidis, Z.J. Ren, J. Greeley, High-entropy nanoparticles: synthesisstructure-property relationships and data-driven discovery, Science 376 (2022) eabn3103. doi: 10.1126/science.abn3103
    [133]
    Y. Zhu, T.R. Kuo, Y.H. Li, M.Y. Qi, G. Chen, J.L. Wang, Y.J. Xu, H.M. Chen, Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy, Energy Environ. Sci. 14 (2021) 1928–1958. doi: 10.1039/D0EE03903A
    [134]
    H. An, L. Wu, L.D. Mandemaker, S. Yang, J. de Ruiter, J.H. Wijten, J.C. Janssens, T. Hartman, W. van der Stam, B.M. Weckhuysen, Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper, Angew. Chem. Int. Ed. 60 (2021) 16576–16584. doi: 10.1002/anie.202104114
    [135]
    Z. Sun, H. Yin, K. Liu, S. Cheng, G.K. Li, S. Kawi, H. Zhao, G. Jia, Z. Yin, Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction, SmartMat 3 (2022) 68–83. doi: 10.1002/smm2.1107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (55) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return