Citation: | Jingfeng Zheng, Jocelyn Elgin, Jieren Shao, Yiying Wu. Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes[J]. eScience. doi: 10.1016/j.esci.2022.10.002 |
(1) L. Zhou, T.-T. Zuo, C. Y. Kwok, S. Y. Kim, A. Assoud, Q. Zhang, J. Janek, L. F. Nazar, High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes, Nat. Energy 7 (2022) 83–93.
|
(2) Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy 5 (2020) 299–308.
|
(3) J. A. Dawson, T. Famprikis, K. E. Johnston, Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects, J. Mater. Chem. A. 9 (2021) 18746– 18772.
|
(4) W. Xia, Y. Zhao, F. Zhao, K. Adair, R. Zhao, S. Li, R. Zou, Y. Zhao, X. Sun, Antiperovskite electrolytes for solid-state batteries, Chem. Rev. 122 (2022) 3763–3819.
|
(5) J. Zheng, H. Fang, L. Fan, Y. Ren, P. Jena, Y. Wu, Antiperovskite K3OI for K-ion solid state electrolyte, J. Phys. Chem. Lett. 12 (2021) 7120–7126.
|
(6) Y. Xiao, K. Turcheniuk, A. Narla, A. Y. Song, X. Ren, A. Magasinski, A. Jain, S. Huang, H. Lee, G. Yushin, Electrolyte melt infiltration for scalable manufacturing of inorganic all-solidstate lithium-ion batteries, Nat. Mater. 20 (2021) 984–990.
|
(7) F. Wang, H. A. Evans, K. Kim, L. Yin, Y. Li, P. C. Tsai, J. Liu, S. H. Lapidus, C. M. Brown, D. J. Siegel, Y. M. Chiang, Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl, Chem. Mater. 32 (2020) 8481–8491.
|
(8) J. Zheng, B. Perry, Y. Wu, Antiperovskite superionic conductors: a critical review, ACS Materials Au. 1 (2021) 92–106.
|
(9) Y. Li, W. Zhou, S. Xin, S. Li, J. Zhu, X. Lü, Z. Cui, Q. Jia, J. Zhou, Y. Zhao, J. B. Goodenough, Fluorine‐doped antiperovskite electrolyte for all‐solid‐state lithium‐ion batteries, Angew. Chem. Int. Ed. 128 (2016) 10119–10122.
|
(10) K. Yoshikawa, T. Yamamoto, M. K. Sugumar, M. Motoyama, Y. Iriyama, Room temperature operation and high cycle stability of an all-solid-state lithium battery fabricated by cold pressing using soft Li2OHBr Solid Electrolyte, Energy & Fuels 35 (15) (2021) 12581–12587.
|
(11) Z. D. Hood, H. Wang, A. Samuthira Pandian, J. K. Keum, C. Liang, Li2OHCl crystalline electrolyte for stable metallic lithium anodes, J. Am. Chem. Soc. 138 (2016) 1768–1771.
|
(12) M. K. Sugumar, T. Yamamoto, M. Motoyama, Y. Iriyama, Room temperature synthesis of antiperovskite structured Li2OHBr, Solid State Ion. 349 (2020) 115298.
|
(13) A. Koedtruad, M. A. Patino, N. Ichikawa, D. Kan, Y. Shimakawa, Crystal structures and ionic conductivity in Li2OHX (X = Cl, Br) Antiperovskites, J. Solid State Chem. 286 (2020) 121263.
|
(14) A. Y. Song, Y. Xiao, K. Turcheniuk, P. Upadhya, A. Ramanujapuram, J. Benson, A. Magasinski, M. Olguin, L. Meda, O. Borodin, G. Yushin, Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups, Adv. Energy Mater. 8 (2018) 1700971.
|
(15) G. Schwering, A. Hönnerscheid, L. van Wüllen, M. Jansen, High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 ≤ n ≤ 2) and Li3-n(OHn)Br (1 ≤ n ≤ 2) at ambient temperatures, Chem. Phys. Chem. 4 (2003) 343–348.
|
(16) J. A. Dawson, P. Canepa, T. Famprikis, C. Masquelier, M. S. Islam, Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries, J. Am. Chem. Soc. 140 (2018) 362–368.
|
(17) K. Shen, Y. Wang, J. Zhang, Y. Zong, G. Li, C. Zhao, H. Chen, Revealing the effect of grain boundary segregation on Li ion transport in polycrystalline anti-perovskite Li3ClO: a phase field study, Phys. Chem. Chem. Phys. 22 (2020) 3030–3036.
|
(18) B. Chen, C. Xu, J. Zhou, Insights into grain boundary in lithium-rich anti-perovskite as solid electrolytes, J. Electrochem. Soc. 165 (2018) A3946–A3951.
|
(19) I. Hanghofer, G. J. Redhammer, S. Rohde, I. Hanzu, A. Senyshyn, H. M. R. Wilkening, D. Rettenwander, Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries, Chem. Mater. 30 (2018) 8134–8144.
|
(20) N. Xiao, X. Ren, M. He, W. D. McCulloch, Y. Wu, Probing mechanisms for inverse correlation between rate performance and capacity in K–O2 batteries, ACS Appl. Mater. Interfaces 9 (2017) 4301–4308.
|
(21) R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces, Chem. Rev. 120 (2020) 6820–6877.
|
(22) L. L. Wong, K. C. Phuah, R. Dai, H. Chen, W. S. Chew, S. Adams, Bond valence pathway analyzer-an automatic rapid screening tool for fast ion conductors within softBV, Chem. Mater. 33 (2021) 625–641.
|
(23) H. Chen, L. L. Wong, S. Adams, Soft BV – a software tool for screening the materials genome of inorganic fast ion conductors, Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 75 (2019) 18–33.
|
(24) P. Hartwig, W. Weppner, Ionic conductivities of lithium-halide-based quaternary compounds, Solid State Ion. 3–4 (1981) 249–254.
|
(25) J. Howard, Z. D. Hood, N. A. W. Holzwarth, Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment, Phys. Rev. Mater. 1 (2017) 075406.
|