Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Ji Xiulei. A perspective of ZnCl2 electrolytes: The physical and electrochemical properties[J]. eScience, 2021, 1(2): 99-107. doi: 10.1016/j.esci.2021.10.004
Citation: Ji Xiulei. A perspective of ZnCl2 electrolytes: The physical and electrochemical properties[J]. eScience, 2021, 1(2): 99-107. doi: 10.1016/j.esci.2021.10.004

A perspective of ZnCl2 electrolytes: The physical and electrochemical properties

doi: 10.1016/j.esci.2021.10.004
More Information
  • Corresponding author: Xiulei Ji, E-mail address: david.ji@oregonstate.edu
  • Received Date: 2021-08-31
  • Revised Date: 2021-10-29
  • Accepted Date: 2021-11-03
  • Available Online: 2021-10-29
  • Molten ZnCl2 hydrates are ionic liquids at room temperature, which exhibit intriguing physical and electrochemical properties. Continuous efforts have been devoted over several decades to understanding the properties of the molten ZnCl2 hydrates that have been dubbed as water-in-salt electrolytes recently. The physical properties of molten ZnCl2 hydrates can be described from the perspectives of ions in their speciation and water molecules regarding their chemical environments. Recently, attention has been given to molten ZnCl2 hydrates as electrolytes for Zn metal batteries. It was revealed that the physical properties of such electrolytes have rich implications in their electrochemical properties. Therefore, it demands a holistic understanding of the physical and electrochemical properties of molten ZnCl2 hydrates to design functional electrolytes to serve high-performing Zn metal batteries. This perspective attempts to review the works that described the properties of concentrated ZnCl2 as an ionic liquid and as an emerging electrolyte. The author also provides a perspective to highlight the needs of future research to circumvent the limits of this electrolyte.
  • ● Concentrated aqueous ZnCl2 solutions have a higher acidity than dilute electrolytes.
    ● Concentrated aqueous ZnCl2 solutions are molten salts.
    ● Design for new aqueous batteries needs holistic considerations around the electrolytes.
    ● The presence [ZnCl4]2- in concentrated ZnCl2 is essential for its unique properties.
    ● Speciation of ions and the environment of water define the electrochemical properties.
  • loading
  • [1]
    K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114 (2014) 11503–11618. doi: 10.1021/cr500003w
    [2]
    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. doi: 10.1021/cm901452z
    [3]
    X. Ji, A paradigm of storage batteries, Energy Environ. Sci. 12 (2019) 3203–3224. doi: 10.1039/C9EE02356A
    [4]
    W. Sun, F. Wang, B. Zhang, et al., A rechargeable zinc-air battery based on zinc peroxide chemistry, Science 371 (2021) 46–51. doi: 10.1126/science.abb9554
    [5]
    J. Holoubek, H. Liu, Z. Wu, et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature, Nat. Energy 6 (2021) 303–313. doi: 10.1038/s41560-021-00783-z
    [6]
    A.J. Bard, L.R. Faulkner, Electrochemical methods fundamentals and applications, Surf. Technol. 20 (1983) 91–92. doi: 10.1016/0376-4583(83)90080-8
    [7]
    E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model, J. Electrochem. Soc. 126 (1979) 2047. doi: 10.1149/1.2128859
    [8]
    M.S. Ding, A. von Cresce, K. Xu, Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte, J. Phys. Chem. C 121 (2017) 2149–2153. doi: 10.1021/acs.jpcc.6b12636
    [9]
    M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem. Soc. 127 (1980) 773. doi: 10.1149/1.2129753
    [10]
    F. McCullough, C. Levine, R. Snelgrove, Secondary Battery, 1989.
    [11]
    X. Wu, Y. Xu, C. Zhang, et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte, J. Am. Chem. Soc. 141 (2019) 6338–6344. doi: 10.1021/jacs.9b00617
    [12]
    K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303–4418. doi: 10.1021/cr030203g
    [13]
    K. Edstroem, T. Gustafsson, J.O. Thomas, The cathode–electrolyte interface in the Li-ion battery, Electrochim. Acta 50 (2004) 397–403. doi: 10.1016/j.electacta.2004.03.049
    [14]
    D. Guerard, A. Herold, Intercalation of lithium into graphite and other carbons, Carbon 13 (1975) 337–345. doi: 10.1016/0008-6223(75)90040-8
    [15]
    R. Fong, U. Von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc. 137 (1990) 2009. doi: 10.1149/1.2086855
    [16]
    J. Chen, W.A. Henderson, H. Pan, et al., Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels, Nano Lett. 17 (2017) 3061–3067. doi: 10.1021/acs.nanolett.7b00417
    [17]
    C. Angell, C. Liu, E. Sanchez, Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity, Nature 362 (1993) 137–139. doi: 10.1038/362137a0
    [18]
    W. McKinnon, J. Dahn, How to reduce the cointercalation of propylene carbonate in Li x ZrS2 and other layered compounds, J. Electrochem. Soc. 132 (1985) 364. doi: 10.1149/1.2113839
    [19]
    S.K. Jeong, M. Inaba, Y. Iriyama, et al., Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction, J. Power Sources 175 (2008) 540–546. doi: 10.1016/j.jpowsour.2007.08.065
    [20]
    Y. Yamada, Y. Takazawa, K. Miyazaki, et al., Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: effect of solvation structure of lithium ion, J. Phys. Chem. C 114 (2010) 11680–11685. doi: 10.1021/jp1037427
    [21]
    L. Suo, Y.S. Hu, H. Li, et al., A new class of solvent-in-salt electrolyte for highenergy rechargeable metallic lithium batteries, Nat. Commun. 4 (2013) 1–9.
    [22]
    L. Suo, O. Borodin, T. Gao, et al., "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science 350 (2015) 938–943. doi: 10.1126/science.aab1595
    [23]
    J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries, Nat. Mater. 19 (2020) 1006–1011. doi: 10.1038/s41563-020-0667-y
    [24]
    J. Braunstein, Some aspects of solution chemistry in liquid mixtures of inorganic salts with water, Inorg. Chim. Acta. Rev. 2 (1968) 19–30. doi: 10.1016/0073-8085(68)80012-9
    [25]
    P. Debye, E. Hückel, The interionic attraction theory of deviations from ideal behavior in solution, Z. Phys. 24 (1923) 185.
    [26]
    J. Qian, W.A. Henderson, W. Xu, et al., High rate and stable cycling of lithium metal anode, Nat. Commun. 6 (2015) 1–9.
    [27]
    X. Ren, S. Chen, H. Lee, et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries, Inside Chem. 4 (2018) 1877–1892.
    [28]
    F. Wang, O. Borodin, T. Gao, et al., Highly reversible zinc metal anode for aqueous batteries, Nat. Mater. 17 (2018) 543–549. doi: 10.1038/s41563-018-0063-z
    [29]
    Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries, Chem. Rev. 121 (2021) 6654–6695. doi: 10.1021/acs.chemrev.1c00191
    [30]
    X. Yan, X. Zhao, C. Liu, et al., High-voltage bi-redox lithium-ion capacitor enabled by energizing free water in "water-in-salt" electrolyte, J. Power Sources 423 (2019) 331–338. doi: 10.1016/j.jpowsour.2019.03.095
    [31]
    L. Suo, D. Oh, Y. Lin, et al., How solid-electrolyte interphase forms in aqueous electrolytes, J. Am. Chem. Soc. 139 (2017) 18670–18680. doi: 10.1021/jacs.7b10688
    [32]
    Z. Tian, W. Deng, X. Wang, et al., Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors, Func. Mater. Lett. 10 (2017) 1750081. doi: 10.1142/S1793604717500813
    [33]
    D.P. Leonard, Z. Wei, G. Chen, et al., Water-in-salt electrolyte for potassium-ion batteries, ACS Energy Lett. 3 (2018) 373–374. doi: 10.1021/acsenergylett.8b00009
    [34]
    X. Lu, G. Li, J.Y. Kim, et al., A novel low-cost sodium–zinc chloride battery, Energy Environ. Sci. 6 (2013) 1837–1843. doi: 10.1039/c3ee24244g
    [35]
    F. Trinidad, M. Montemayor, E. Fatas, Performance study of Zn/ZnCl2, NH4Cl/Polyaniline/Carbon battery, J. Electrochem. Soc. 138 (1991) 3186. doi: 10.1149/1.2085390
    [36]
    N. Khalid, Y.B. Ismail, A. Mohamad, ZnCl2-and NH4Cl-hydroponics gel electrolytes for zinc–carbon batteries, J. Power Sources 176 (2008) 393–395. doi: 10.1016/j.jpowsour.2007.10.048
    [37]
    C. Laroque, Transparent papers: a technological outline and conservation review, Stud. Conserv. 45 (2000) 21–31. doi: 10.1179/sic.2000.45.s1.004
    [38]
    S. Sen, B.P. Losey, E.E. Gordon, et al., Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford the solubility of cellulose, J. Phys. Chem. B 120 (2016) 1134–1141. doi: 10.1021/acs.jpcb.5b11400
    [39]
    K. Letters, Viscosimetric analysis on the reaction of cellulose with concentrated zinc chloride solutions, Kolloid Z. 58 (1932) 229–239. doi: 10.1007/BF01460731
    [40]
    H. Leipner, S. Fischer, E. Brendler, et al., Structural changes of cellulose dissolved in molten salt hydrates, Macromol. Chem. Phys. 201 (2000) 2041–2049. doi: 10.1002/1521-3935(20001001)201:15<2041::AID-MACP2041>3.0.CO;2-E
    [41]
    Z. Hu, M. Srinivasan, Y. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon 39 (2001) 877–886. doi: 10.1016/S0008-6223(00)00198-6
    [42]
    N.R. Khalili, M. Campbell, G. Sandi, et al., Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon 38 (2000) 1905–1915. doi: 10.1016/S0008-6223(00)00043-9
    [43]
    C. Xu, B. Li, H. Du, et al., Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem. 124 (2012) 957–959. doi: 10.1002/ange.201106307
    [44]
    Y. Zhang, Z. Chen, H. Qiu, et al., Pursuit of reversible Zn electrochemistry: a timehonored challenge towards low-cost and green energy storage, NPG Asia Mater. 12 (2020) 1–24. doi: 10.1038/s41427-019-0187-x
    [45]
    L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries, Joule 4 (2020) 771–799. doi: 10.1016/j.joule.2020.03.002
    [46]
    X. Ji, H. Jiang, A perspective: the technical barriers of Zn metal batteries, Chem. Res. Chin. Univ. 36 (2020) 55–60. doi: 10.1007/s40242-020-9092-7
    [47]
    L. Cao, D. Li, T. Pollard, et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nat. Nanotechnol. (2021) 1–9.
    [48]
    C. Zhang, J. Holoubek, X. Wu, et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chem. Commun. 54 (2018) 14097–14099. doi: 10.1039/C8CC07730D
    [49]
    C. Zhang, W. Shin, L. Zhu, et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free, Carbon Energy 3 (2021) 339–348. doi: 10.1002/cey2.70
    [50]
    C.Y. Chen, K. Matsumoto, K. Kubota, et al., A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries, Adv. Energy Mater. 9 (2019) 1900196. doi: 10.1002/aenm.201900196
    [51]
    A.P. Abbott, G. Capper, D.L. Davies, et al., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains electronic supplementary information (ESI) available: plot of conductivity vs. temperature for the ionic liquid formed from zinc chloride and choline chloride (2: 1), Chem. Commun. 19 (2001) 2010–2011. See, http://www.rsc.org/suppdata/cc/b1/b106357j.
    [52]
    E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (2014) 11060–11082. doi: 10.1021/cr300162p
    [53]
    J. Wu, Q. Liang, X. Yu, et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective, Adv. Funct. Mater. 31 (2021) 2011102. doi: 10.1002/adfm.202011102
    [54]
    R.J. Wilcox, B.P. Losey, J.C.W. Folmer, et al., Crystalline and liquid structure of zinc chloride trihydrate: a unique ionic liquid, Inorg. Chem. 54 (2015) 1109–1119. doi: 10.1021/ic5024532
    [55]
    F. Mylius, R. Dietz, Über das Chlorzink. (Studien über die Loslichkeit der Salze XIV. ), Z. Anorg. Chem. 44 (1905) 209–220. doi: 10.1002/zaac.19050440115
    [56]
    R.J. Wilcox, Sorption to dissolution: the reactivity of small molecules with condensed phase metal halide networks,, 2009.
    [57]
    B.P. Losey, Understanding solvation: A case study in zinc chloride dissolution,, North Carolina State University, 2018.
    [58]
    N. Marley, J. Gaffney, Laser Raman spectral determination of zinc halide complexes in aqueous solutions as a function of temperature and pressure, Appl. Spectrosc. 44 (1990) 469–476. doi: 10.1366/0003702904086128
    [59]
    C. Wang, Z. Pei, Q. Meng, et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes, Angew. Chem. 133 (2021) 1003–1010. doi: 10.1002/ange.202012030
    [60]
    D. Morris, E. Short, D. Waters, Zinc chloride and zinc bromide complexes—Ⅲ: structures of species in solution, J. Inorg. Nucl. Chem. 25 (1963) 975–983. doi: 10.1016/0022-1902(63)80031-7
    [61]
    O.G. Parchment, M.A. Vincent, I.H. Hillier, Speciation in aqueous zinc chloride. An ab initio hybrid microsolvation/continuum approach, J. Phys. Chem. 100 (1996) 9689–9693. doi: 10.1021/jp960123z
    [62]
    H. Maki, R. Sogawa, M. Fukui, et al., Quantitative analysis of water activity related to hydration structure in highly concentrated aqueous electrolyte solutions, Electrochemistry 87 (2019) 139–141. doi: 10.5796/electrochemistry.18-00087
    [63]
    M. Maeda, T. Ito, M. Hori, et al., Vaporization of water from hydrous melts and concentrated electrolyte aqueous solutions, ECS Proceedings Volumes 1987 (1987) 105.
    [64]
    M. Maeda, T. Ito, M. Hori, et al., The structure of zinc chloride complexes in aqueous solution, Z. Naturforsch. 51 (1996) 63–70. doi: 10.1515/zna-1996-1-210
    [65]
    T. Yamaguchi, S. Hayashi, H. Ohtaki, X-ray diffraction and Raman studies of zinc (Ⅱ) chloride hydrate melts, ZnCl2·rH2O (r=1.8, 2.5, 3.0, 4.0, and 6.2), J. Phys. Chem. 93 (1989) 2620–2625. doi: 10.1021/j100343a074
    [66]
    J.N. Shoolery, B.J. Alder, Nuclear magnetic resonance in concentrated aqueous electrolytes, J. Chem. Phys. 23 (1955) 805–811. doi: 10.1063/1.1742126
    [67]
    Y. Nakamura, S. Shimokawa, K. Futamata, et al., NMR relaxation study of water molecules in concentrated zinc chloride solutions, J. Chem. Phys. 77 (1982) 3258–3262. doi: 10.1063/1.444202
    [68]
    K. Amann-Winkel, M.C. Bellissent-Funel, L.E. Bove, et al., X-ray and neutron scattering of water, Chem. Rev. 116 (2016) 7570–7589. doi: 10.1021/acs.chemrev.5b00663
    [69]
    T. Egami, S.J. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Newnes, 2012.
    [70]
    J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys. 1 (1933) 515–548. doi: 10.1063/1.1749327
    [71]
    C. Choe, J. Lademann, M.E. Darvin, Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo, Analyst 141 (2016) 6329–6337. doi: 10.1039/C6AN01717G
    [72]
    Q. Sun, The Raman OH stretching bands of liquid water, Vib. Spectrosc. 51 (2009) 213–217. doi: 10.1016/j.vibspec.2009.05.002
    [73]
    J. Zheng, G. Tan, P. Shan, et al., Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes, Inside Chem. 4 (2018) 2872–2882.
    [74]
    N. Dubouis, P. Lemaire, B. Mirvaux, et al., The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for "Water-inSalt" electrolytes, Energy Environ. Sci. 11 (2018) 3491–3499. doi: 10.1039/C8EE02456A
    [75]
    Y.H. Zhang, C.K. Chan, Observations of water monomers in supersaturated NaClO4, LiClO4, and Mg(ClO4)2 droplets using Raman spectroscopy, J. Phys. Chem. 107 (2003) 5956–5962. doi: 10.1021/jp0271256
    [76]
    B. Gavriel, N. Shpigel, F. Malchik, et al., Enhanced Performance of Ti3C2Tx (MXene) Electrodes in concentrated ZnCl2 solutions: a combined Electrochemical and EQCM-D study, Energy Storage Mater. 38 (2021) 535–541. doi: 10.1016/j.ensm.2021.03.027
    [77]
    L.P. Hammett, A.J. Deyrup, A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water 1, J. Am. Chem. Soc. 54 (1932) 2721–2739. doi: 10.1021/ja01346a015
    [78]
    J. Duffy, M. Ingram, Acidic nature of metal aquo complexes: proton-transfer equilibriums in concentrated aqueous media, Inorg. Chem. 17 (1978) 2798–2802. doi: 10.1021/ic50188a023
    [79]
    S. Crane, A. Easteal, Acidity of hyperconcentrated electrolyte solutions. Hammett acidity function measurements for aqueous ZnCl2, + LiCl solutions, Aust. J. Chem. 33 (1980) 2325–2329. doi: 10.1071/CH9802325
    [80]
    D.H. McDaniel, Acidity of zinc chloride solutions, Inorg. Chem. 18 (1979), p. 1412-1412.
    [81]
    Q. Zhang, Y. Ma, Y. Lu, et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun. 11 (2020) 1–10. doi: 10.1038/s41467-019-13993-7
    [82]
    G.T. Kim, G.B. Appetecchi, M. Montanino, et al., Long-term cyclability of lithium metal electrodes in ionic liquid-based electrolytes at room temperature, Ecs Transactions 25 (2010) 127.
    [83]
    B.D. Adams, J. Zheng, X. Ren, et al., Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries, Adv. Energy Mater. 8 (2018) 1702097. doi: 10.1002/aenm.201702097
    [84]
    N. Zhang, X. Chen, M. Yu, et al., Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev. 49 (2020) 4203–4219. doi: 10.1039/C9CS00349E
    [85]
    Y. Dong, L. Miao, G. Ma, et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries, Chem. Sci. 12 (2021) 5843–5852. doi: 10.1039/D0SC06734B
    [86]
    M.M. Huie, D.C. Bock, E.S. Takeuchi, et al., Cathode materials for magnesium and magnesium-ion based batteries, Coord. Chem. Rev. 287 (2015) 15–27. doi: 10.1016/j.ccr.2014.11.005
    [87]
    H. Dong, O. Tutusaus, Y. Liang, et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes, Nat. Energy 5 (2020) 1043–1050. doi: 10.1038/s41560-020-00734-0
    [88]
    L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, et al., ZnCl2 "water-in-salt" electrolyte transforms the performance of vanadium oxide as a Zn battery cathode, Adv. Funct. Mater. 29 (2019) 1902653. doi: 10.1002/adfm.201902653
    [89]
    Q. Ni, H. Jiang, S. Sandstrom, et al., A Na3V2(PO4)2O1.6F1.4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte, Adv. Funct. Mater. 30 (2020) 2003511. doi: 10.1002/adfm.202003511
    [90]
    H.Y. Shi, Y. Song, Z. Qin, et al., Inhibiting VOPO4·xH2O Decomposition and Dissolution in rechargeable aqueous zinc Batteries to promote voltage and capacity stabilities, Angew. Chem. Int. Ed. 58 (2019) 16057–16061. doi: 10.1002/anie.201908853
    [91]
    A.J. Easteal, C.A. Angell, A novel electrolyte system: Solutions of diethyl ether in concentrated aqueous HCl + ZnCl2 mixtures, J. Electrochem. Soc. 120 (1973) 1143. doi: 10.1149/1.2403650
    [92]
    T. Placke, A. Heckmann, R. Schmuch, et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries, Joule 2 (2018) 2528–2550. doi: 10.1016/j.joule.2018.09.003
    [93]
    L. Zhang, H. Wang, X. Zhang, et al., A review of emerging dual-ion batteries: fundamentals and recent advances, Adv. Funct. Mater. 31 (2021) 2010958. doi: 10.1002/adfm.202010958
    [94]
    H.K. Roobottom, H.D.B. Jenkins, J. Passmore, et al., Thermochemical radii of complex ions, J. Chem. Educ. 76 (1999) 1570. doi: 10.1021/ed076p1570
    [95]
    Q. Guo, K. Kim, H. Jiang, et al., A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery, Adv. Funct. Mater. 30 (2020) 2002825. doi: 10.1002/adfm.202002825
    [96]
    W. Pan, Y. Wang, X. Zhao, et al., High-performance aqueous Na–Zn hybrid ion battery boosted by "water-in-gel" electrolyte, Adv. Funct. Mater. 31 (2021) 2008783. doi: 10.1002/adfm.202008783
    [97]
    J.J. Hong, L. Zhu, C. Chen, et al., A dual plating battery with the iodine/[Znlx(OH2)4-x]2-x cathode, Angew. Chem. 131 (2019) 16057–16062. doi: 10.1002/ange.201909324
    [98]
    G. Kear, B. Barker, F. Walsh, Electrochemical corrosion of unalloyed copper in chloride media—a critical review, Corrosion Sci. 46 (2004) 109–135. doi: 10.1016/S0010-938X(02)00257-3
    [99]
    T. Zhang, X. Jiang, S. Li, Acceleration of corrosive wear of duplex stainless steel by chloride in 69% H3PO4 solution, Wear 199 (1996) 253–259. doi: 10.1016/0043-1648(96)06982-7
    [100]
    R. Foley, Role of the chloride ion in iron corrosion, Corrosion 26 (1970) 58–70. doi: 10.5006/0010-9312-26.2.58
    [101]
    G. Bianchi, P. Longhi, Copper in sea-water, potential-pH diagrams, Corrosion Sci. 13 (1973) 853–864. doi: 10.1016/S0010-938X(73)80067-8
    [102]
    A. Moreau, Etude du mecanisme d'oxydo-reduction du cuivre dans les solutions chlorurees acides—I. Systeme Cu□Cu Cl-2, Electrochim. Acta 26 (1981) 497–504. doi: 10.1016/0013-4686(81)87029-6
    [103]
    T. Dippel, K. Kreuer, Proton transport mechanism in concentrated aqueous solutions and solid hydrates of acids, Solid State Ionics 46 (1991) 3–9. doi: 10.1016/0167-2738(91)90122-R
    [104]
    K. Sagoe-Crentsil, F.P. Glasser, "Green rust", iron solubility and the role of chloride in the corrosion of steel at high pH, Cement Concr. Res. 23 (1993) 785–791. doi: 10.1016/0008-8846(93)90032-5
    [105]
    D. Prando, A. Brenna, M.V. Diamanti, et al., Corrosion of titanium: Part 1: aggressive environments and main forms of degradation, J. Appl. Biomater. Funct. Mater. 15 (2017) e291–e302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (494) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return