Citation: | Ji Xiulei. A perspective of ZnCl2 electrolytes: The physical and electrochemical properties[J]. eScience, 2021, 1(2): 99-107. doi: 10.1016/j.esci.2021.10.004 |
[1] |
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114 (2014) 11503–11618. doi: 10.1021/cr500003w
|
[2] |
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. doi: 10.1021/cm901452z
|
[3] |
X. Ji, A paradigm of storage batteries, Energy Environ. Sci. 12 (2019) 3203–3224. doi: 10.1039/C9EE02356A
|
[4] |
W. Sun, F. Wang, B. Zhang, et al., A rechargeable zinc-air battery based on zinc peroxide chemistry, Science 371 (2021) 46–51. doi: 10.1126/science.abb9554
|
[5] |
J. Holoubek, H. Liu, Z. Wu, et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature, Nat. Energy 6 (2021) 303–313. doi: 10.1038/s41560-021-00783-z
|
[6] |
A.J. Bard, L.R. Faulkner, Electrochemical methods fundamentals and applications, Surf. Technol. 20 (1983) 91–92. doi: 10.1016/0376-4583(83)90080-8
|
[7] |
E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model, J. Electrochem. Soc. 126 (1979) 2047. doi: 10.1149/1.2128859
|
[8] |
M.S. Ding, A. von Cresce, K. Xu, Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte, J. Phys. Chem. C 121 (2017) 2149–2153. doi: 10.1021/acs.jpcc.6b12636
|
[9] |
M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem. Soc. 127 (1980) 773. doi: 10.1149/1.2129753
|
[10] |
F. McCullough, C. Levine, R. Snelgrove, Secondary Battery, 1989.
|
[11] |
X. Wu, Y. Xu, C. Zhang, et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte, J. Am. Chem. Soc. 141 (2019) 6338–6344. doi: 10.1021/jacs.9b00617
|
[12] |
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303–4418. doi: 10.1021/cr030203g
|
[13] |
K. Edstroem, T. Gustafsson, J.O. Thomas, The cathode–electrolyte interface in the Li-ion battery, Electrochim. Acta 50 (2004) 397–403. doi: 10.1016/j.electacta.2004.03.049
|
[14] |
D. Guerard, A. Herold, Intercalation of lithium into graphite and other carbons, Carbon 13 (1975) 337–345. doi: 10.1016/0008-6223(75)90040-8
|
[15] |
R. Fong, U. Von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc. 137 (1990) 2009. doi: 10.1149/1.2086855
|
[16] |
J. Chen, W.A. Henderson, H. Pan, et al., Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels, Nano Lett. 17 (2017) 3061–3067. doi: 10.1021/acs.nanolett.7b00417
|
[17] |
C. Angell, C. Liu, E. Sanchez, Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity, Nature 362 (1993) 137–139. doi: 10.1038/362137a0
|
[18] |
W. McKinnon, J. Dahn, How to reduce the cointercalation of propylene carbonate in Li x ZrS2 and other layered compounds, J. Electrochem. Soc. 132 (1985) 364. doi: 10.1149/1.2113839
|
[19] |
S.K. Jeong, M. Inaba, Y. Iriyama, et al., Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction, J. Power Sources 175 (2008) 540–546. doi: 10.1016/j.jpowsour.2007.08.065
|
[20] |
Y. Yamada, Y. Takazawa, K. Miyazaki, et al., Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: effect of solvation structure of lithium ion, J. Phys. Chem. C 114 (2010) 11680–11685. doi: 10.1021/jp1037427
|
[21] |
L. Suo, Y.S. Hu, H. Li, et al., A new class of solvent-in-salt electrolyte for highenergy rechargeable metallic lithium batteries, Nat. Commun. 4 (2013) 1–9.
|
[22] |
L. Suo, O. Borodin, T. Gao, et al., "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science 350 (2015) 938–943. doi: 10.1126/science.aab1595
|
[23] |
J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries, Nat. Mater. 19 (2020) 1006–1011. doi: 10.1038/s41563-020-0667-y
|
[24] |
J. Braunstein, Some aspects of solution chemistry in liquid mixtures of inorganic salts with water, Inorg. Chim. Acta. Rev. 2 (1968) 19–30. doi: 10.1016/0073-8085(68)80012-9
|
[25] |
P. Debye, E. Hückel, The interionic attraction theory of deviations from ideal behavior in solution, Z. Phys. 24 (1923) 185.
|
[26] |
J. Qian, W.A. Henderson, W. Xu, et al., High rate and stable cycling of lithium metal anode, Nat. Commun. 6 (2015) 1–9.
|
[27] |
X. Ren, S. Chen, H. Lee, et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries, Inside Chem. 4 (2018) 1877–1892.
|
[28] |
F. Wang, O. Borodin, T. Gao, et al., Highly reversible zinc metal anode for aqueous batteries, Nat. Mater. 17 (2018) 543–549. doi: 10.1038/s41563-018-0063-z
|
[29] |
Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries, Chem. Rev. 121 (2021) 6654–6695. doi: 10.1021/acs.chemrev.1c00191
|
[30] |
X. Yan, X. Zhao, C. Liu, et al., High-voltage bi-redox lithium-ion capacitor enabled by energizing free water in "water-in-salt" electrolyte, J. Power Sources 423 (2019) 331–338. doi: 10.1016/j.jpowsour.2019.03.095
|
[31] |
L. Suo, D. Oh, Y. Lin, et al., How solid-electrolyte interphase forms in aqueous electrolytes, J. Am. Chem. Soc. 139 (2017) 18670–18680. doi: 10.1021/jacs.7b10688
|
[32] |
Z. Tian, W. Deng, X. Wang, et al., Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors, Func. Mater. Lett. 10 (2017) 1750081. doi: 10.1142/S1793604717500813
|
[33] |
D.P. Leonard, Z. Wei, G. Chen, et al., Water-in-salt electrolyte for potassium-ion batteries, ACS Energy Lett. 3 (2018) 373–374. doi: 10.1021/acsenergylett.8b00009
|
[34] |
X. Lu, G. Li, J.Y. Kim, et al., A novel low-cost sodium–zinc chloride battery, Energy Environ. Sci. 6 (2013) 1837–1843. doi: 10.1039/c3ee24244g
|
[35] |
F. Trinidad, M. Montemayor, E. Fatas, Performance study of Zn/ZnCl2, NH4Cl/Polyaniline/Carbon battery, J. Electrochem. Soc. 138 (1991) 3186. doi: 10.1149/1.2085390
|
[36] |
N. Khalid, Y.B. Ismail, A. Mohamad, ZnCl2-and NH4Cl-hydroponics gel electrolytes for zinc–carbon batteries, J. Power Sources 176 (2008) 393–395. doi: 10.1016/j.jpowsour.2007.10.048
|
[37] |
C. Laroque, Transparent papers: a technological outline and conservation review, Stud. Conserv. 45 (2000) 21–31. doi: 10.1179/sic.2000.45.s1.004
|
[38] |
S. Sen, B.P. Losey, E.E. Gordon, et al., Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford the solubility of cellulose, J. Phys. Chem. B 120 (2016) 1134–1141. doi: 10.1021/acs.jpcb.5b11400
|
[39] |
K. Letters, Viscosimetric analysis on the reaction of cellulose with concentrated zinc chloride solutions, Kolloid Z. 58 (1932) 229–239. doi: 10.1007/BF01460731
|
[40] |
H. Leipner, S. Fischer, E. Brendler, et al., Structural changes of cellulose dissolved in molten salt hydrates, Macromol. Chem. Phys. 201 (2000) 2041–2049. doi: 10.1002/1521-3935(20001001)201:15<2041::AID-MACP2041>3.0.CO;2-E
|
[41] |
Z. Hu, M. Srinivasan, Y. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon 39 (2001) 877–886. doi: 10.1016/S0008-6223(00)00198-6
|
[42] |
N.R. Khalili, M. Campbell, G. Sandi, et al., Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon 38 (2000) 1905–1915. doi: 10.1016/S0008-6223(00)00043-9
|
[43] |
C. Xu, B. Li, H. Du, et al., Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem. 124 (2012) 957–959. doi: 10.1002/ange.201106307
|
[44] |
Y. Zhang, Z. Chen, H. Qiu, et al., Pursuit of reversible Zn electrochemistry: a timehonored challenge towards low-cost and green energy storage, NPG Asia Mater. 12 (2020) 1–24. doi: 10.1038/s41427-019-0187-x
|
[45] |
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries, Joule 4 (2020) 771–799. doi: 10.1016/j.joule.2020.03.002
|
[46] |
X. Ji, H. Jiang, A perspective: the technical barriers of Zn metal batteries, Chem. Res. Chin. Univ. 36 (2020) 55–60. doi: 10.1007/s40242-020-9092-7
|
[47] |
L. Cao, D. Li, T. Pollard, et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nat. Nanotechnol. (2021) 1–9.
|
[48] |
C. Zhang, J. Holoubek, X. Wu, et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chem. Commun. 54 (2018) 14097–14099. doi: 10.1039/C8CC07730D
|
[49] |
C. Zhang, W. Shin, L. Zhu, et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free, Carbon Energy 3 (2021) 339–348. doi: 10.1002/cey2.70
|
[50] |
C.Y. Chen, K. Matsumoto, K. Kubota, et al., A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries, Adv. Energy Mater. 9 (2019) 1900196. doi: 10.1002/aenm.201900196
|
[51] |
A.P. Abbott, G. Capper, D.L. Davies, et al., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains electronic supplementary information (ESI) available: plot of conductivity vs. temperature for the ionic liquid formed from zinc chloride and choline chloride (2: 1), Chem. Commun. 19 (2001) 2010–2011. See, http://www.rsc.org/suppdata/cc/b1/b106357j.
|
[52] |
E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (2014) 11060–11082. doi: 10.1021/cr300162p
|
[53] |
J. Wu, Q. Liang, X. Yu, et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective, Adv. Funct. Mater. 31 (2021) 2011102. doi: 10.1002/adfm.202011102
|
[54] |
R.J. Wilcox, B.P. Losey, J.C.W. Folmer, et al., Crystalline and liquid structure of zinc chloride trihydrate: a unique ionic liquid, Inorg. Chem. 54 (2015) 1109–1119. doi: 10.1021/ic5024532
|
[55] |
F. Mylius, R. Dietz, Über das Chlorzink. (Studien über die Loslichkeit der Salze XIV. ), Z. Anorg. Chem. 44 (1905) 209–220. doi: 10.1002/zaac.19050440115
|
[56] |
R.J. Wilcox, Sorption to dissolution: the reactivity of small molecules with condensed phase metal halide networks,, 2009.
|
[57] |
B.P. Losey, Understanding solvation: A case study in zinc chloride dissolution,, North Carolina State University, 2018.
|
[58] |
N. Marley, J. Gaffney, Laser Raman spectral determination of zinc halide complexes in aqueous solutions as a function of temperature and pressure, Appl. Spectrosc. 44 (1990) 469–476. doi: 10.1366/0003702904086128
|
[59] |
C. Wang, Z. Pei, Q. Meng, et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes, Angew. Chem. 133 (2021) 1003–1010. doi: 10.1002/ange.202012030
|
[60] |
D. Morris, E. Short, D. Waters, Zinc chloride and zinc bromide complexes—Ⅲ: structures of species in solution, J. Inorg. Nucl. Chem. 25 (1963) 975–983. doi: 10.1016/0022-1902(63)80031-7
|
[61] |
O.G. Parchment, M.A. Vincent, I.H. Hillier, Speciation in aqueous zinc chloride. An ab initio hybrid microsolvation/continuum approach, J. Phys. Chem. 100 (1996) 9689–9693. doi: 10.1021/jp960123z
|
[62] |
H. Maki, R. Sogawa, M. Fukui, et al., Quantitative analysis of water activity related to hydration structure in highly concentrated aqueous electrolyte solutions, Electrochemistry 87 (2019) 139–141. doi: 10.5796/electrochemistry.18-00087
|
[63] |
M. Maeda, T. Ito, M. Hori, et al., Vaporization of water from hydrous melts and concentrated electrolyte aqueous solutions, ECS Proceedings Volumes 1987 (1987) 105.
|
[64] |
M. Maeda, T. Ito, M. Hori, et al., The structure of zinc chloride complexes in aqueous solution, Z. Naturforsch. 51 (1996) 63–70. doi: 10.1515/zna-1996-1-210
|
[65] |
T. Yamaguchi, S. Hayashi, H. Ohtaki, X-ray diffraction and Raman studies of zinc (Ⅱ) chloride hydrate melts, ZnCl2·rH2O (r=1.8, 2.5, 3.0, 4.0, and 6.2), J. Phys. Chem. 93 (1989) 2620–2625. doi: 10.1021/j100343a074
|
[66] |
J.N. Shoolery, B.J. Alder, Nuclear magnetic resonance in concentrated aqueous electrolytes, J. Chem. Phys. 23 (1955) 805–811. doi: 10.1063/1.1742126
|
[67] |
Y. Nakamura, S. Shimokawa, K. Futamata, et al., NMR relaxation study of water molecules in concentrated zinc chloride solutions, J. Chem. Phys. 77 (1982) 3258–3262. doi: 10.1063/1.444202
|
[68] |
K. Amann-Winkel, M.C. Bellissent-Funel, L.E. Bove, et al., X-ray and neutron scattering of water, Chem. Rev. 116 (2016) 7570–7589. doi: 10.1021/acs.chemrev.5b00663
|
[69] |
T. Egami, S.J. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Newnes, 2012.
|
[70] |
J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys. 1 (1933) 515–548. doi: 10.1063/1.1749327
|
[71] |
C. Choe, J. Lademann, M.E. Darvin, Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo, Analyst 141 (2016) 6329–6337. doi: 10.1039/C6AN01717G
|
[72] |
Q. Sun, The Raman OH stretching bands of liquid water, Vib. Spectrosc. 51 (2009) 213–217. doi: 10.1016/j.vibspec.2009.05.002
|
[73] |
J. Zheng, G. Tan, P. Shan, et al., Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes, Inside Chem. 4 (2018) 2872–2882.
|
[74] |
N. Dubouis, P. Lemaire, B. Mirvaux, et al., The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for "Water-inSalt" electrolytes, Energy Environ. Sci. 11 (2018) 3491–3499. doi: 10.1039/C8EE02456A
|
[75] |
Y.H. Zhang, C.K. Chan, Observations of water monomers in supersaturated NaClO4, LiClO4, and Mg(ClO4)2 droplets using Raman spectroscopy, J. Phys. Chem. 107 (2003) 5956–5962. doi: 10.1021/jp0271256
|
[76] |
B. Gavriel, N. Shpigel, F. Malchik, et al., Enhanced Performance of Ti3C2Tx (MXene) Electrodes in concentrated ZnCl2 solutions: a combined Electrochemical and EQCM-D study, Energy Storage Mater. 38 (2021) 535–541. doi: 10.1016/j.ensm.2021.03.027
|
[77] |
L.P. Hammett, A.J. Deyrup, A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water 1, J. Am. Chem. Soc. 54 (1932) 2721–2739. doi: 10.1021/ja01346a015
|
[78] |
J. Duffy, M. Ingram, Acidic nature of metal aquo complexes: proton-transfer equilibriums in concentrated aqueous media, Inorg. Chem. 17 (1978) 2798–2802. doi: 10.1021/ic50188a023
|
[79] |
S. Crane, A. Easteal, Acidity of hyperconcentrated electrolyte solutions. Hammett acidity function measurements for aqueous ZnCl2, + LiCl solutions, Aust. J. Chem. 33 (1980) 2325–2329. doi: 10.1071/CH9802325
|
[80] |
D.H. McDaniel, Acidity of zinc chloride solutions, Inorg. Chem. 18 (1979), p. 1412-1412.
|
[81] |
Q. Zhang, Y. Ma, Y. Lu, et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun. 11 (2020) 1–10. doi: 10.1038/s41467-019-13993-7
|
[82] |
G.T. Kim, G.B. Appetecchi, M. Montanino, et al., Long-term cyclability of lithium metal electrodes in ionic liquid-based electrolytes at room temperature, Ecs Transactions 25 (2010) 127.
|
[83] |
B.D. Adams, J. Zheng, X. Ren, et al., Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries, Adv. Energy Mater. 8 (2018) 1702097. doi: 10.1002/aenm.201702097
|
[84] |
N. Zhang, X. Chen, M. Yu, et al., Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev. 49 (2020) 4203–4219. doi: 10.1039/C9CS00349E
|
[85] |
Y. Dong, L. Miao, G. Ma, et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries, Chem. Sci. 12 (2021) 5843–5852. doi: 10.1039/D0SC06734B
|
[86] |
M.M. Huie, D.C. Bock, E.S. Takeuchi, et al., Cathode materials for magnesium and magnesium-ion based batteries, Coord. Chem. Rev. 287 (2015) 15–27. doi: 10.1016/j.ccr.2014.11.005
|
[87] |
H. Dong, O. Tutusaus, Y. Liang, et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes, Nat. Energy 5 (2020) 1043–1050. doi: 10.1038/s41560-020-00734-0
|
[88] |
L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, et al., ZnCl2 "water-in-salt" electrolyte transforms the performance of vanadium oxide as a Zn battery cathode, Adv. Funct. Mater. 29 (2019) 1902653. doi: 10.1002/adfm.201902653
|
[89] |
Q. Ni, H. Jiang, S. Sandstrom, et al., A Na3V2(PO4)2O1.6F1.4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte, Adv. Funct. Mater. 30 (2020) 2003511. doi: 10.1002/adfm.202003511
|
[90] |
H.Y. Shi, Y. Song, Z. Qin, et al., Inhibiting VOPO4·xH2O Decomposition and Dissolution in rechargeable aqueous zinc Batteries to promote voltage and capacity stabilities, Angew. Chem. Int. Ed. 58 (2019) 16057–16061. doi: 10.1002/anie.201908853
|
[91] |
A.J. Easteal, C.A. Angell, A novel electrolyte system: Solutions of diethyl ether in concentrated aqueous HCl + ZnCl2 mixtures, J. Electrochem. Soc. 120 (1973) 1143. doi: 10.1149/1.2403650
|
[92] |
T. Placke, A. Heckmann, R. Schmuch, et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries, Joule 2 (2018) 2528–2550. doi: 10.1016/j.joule.2018.09.003
|
[93] |
L. Zhang, H. Wang, X. Zhang, et al., A review of emerging dual-ion batteries: fundamentals and recent advances, Adv. Funct. Mater. 31 (2021) 2010958. doi: 10.1002/adfm.202010958
|
[94] |
H.K. Roobottom, H.D.B. Jenkins, J. Passmore, et al., Thermochemical radii of complex ions, J. Chem. Educ. 76 (1999) 1570. doi: 10.1021/ed076p1570
|
[95] |
Q. Guo, K. Kim, H. Jiang, et al., A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery, Adv. Funct. Mater. 30 (2020) 2002825. doi: 10.1002/adfm.202002825
|
[96] |
W. Pan, Y. Wang, X. Zhao, et al., High-performance aqueous Na–Zn hybrid ion battery boosted by "water-in-gel" electrolyte, Adv. Funct. Mater. 31 (2021) 2008783. doi: 10.1002/adfm.202008783
|
[97] |
J.J. Hong, L. Zhu, C. Chen, et al., A dual plating battery with the iodine/[Znlx(OH2)4-x]2-x cathode, Angew. Chem. 131 (2019) 16057–16062. doi: 10.1002/ange.201909324
|
[98] |
G. Kear, B. Barker, F. Walsh, Electrochemical corrosion of unalloyed copper in chloride media—a critical review, Corrosion Sci. 46 (2004) 109–135. doi: 10.1016/S0010-938X(02)00257-3
|
[99] |
T. Zhang, X. Jiang, S. Li, Acceleration of corrosive wear of duplex stainless steel by chloride in 69% H3PO4 solution, Wear 199 (1996) 253–259. doi: 10.1016/0043-1648(96)06982-7
|
[100] |
R. Foley, Role of the chloride ion in iron corrosion, Corrosion 26 (1970) 58–70. doi: 10.5006/0010-9312-26.2.58
|
[101] |
G. Bianchi, P. Longhi, Copper in sea-water, potential-pH diagrams, Corrosion Sci. 13 (1973) 853–864. doi: 10.1016/S0010-938X(73)80067-8
|
[102] |
A. Moreau, Etude du mecanisme d'oxydo-reduction du cuivre dans les solutions chlorurees acides—I. Systeme Cu□Cu Cl-2, Electrochim. Acta 26 (1981) 497–504. doi: 10.1016/0013-4686(81)87029-6
|
[103] |
T. Dippel, K. Kreuer, Proton transport mechanism in concentrated aqueous solutions and solid hydrates of acids, Solid State Ionics 46 (1991) 3–9. doi: 10.1016/0167-2738(91)90122-R
|
[104] |
K. Sagoe-Crentsil, F.P. Glasser, "Green rust", iron solubility and the role of chloride in the corrosion of steel at high pH, Cement Concr. Res. 23 (1993) 785–791. doi: 10.1016/0008-8846(93)90032-5
|
[105] |
D. Prando, A. Brenna, M.V. Diamanti, et al., Corrosion of titanium: Part 1: aggressive environments and main forms of degradation, J. Appl. Biomater. Funct. Mater. 15 (2017) e291–e302.
|