Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Feng Xin, Shi Xiaoyu, Ning Jing, Wang Dong, Zhang Jincheng, Hao Yue, Wu Zhong-Shuai. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications[J]. eScience, 2021, 1(2): 124-140. doi: 10.1016/j.esci.2021.11.005
Citation: Feng Xin, Shi Xiaoyu, Ning Jing, Wang Dong, Zhang Jincheng, Hao Yue, Wu Zhong-Shuai. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications[J]. eScience, 2021, 1(2): 124-140. doi: 10.1016/j.esci.2021.11.005

Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications

doi: 10.1016/j.esci.2021.11.005
More Information
  • Corresponding author: E-mail addresses: ningj@xidian.edu.cn (J. Ning); E-mail addresses: wuzs@dicp.ac.cn (Z.-S. Wu)
  • Received Date: 2021-08-21
  • Revised Date: 2021-10-17
  • Accepted Date: 2021-11-28
  • Available Online: 2021-12-03
  • Recently, micro-supercapacitors (MSCs) have undergone major development as next-generation micro-electrochemical energy storage devices for self-powered, integrated, and wearable systems, thanks to their excellent performance capability. In particular, their rapid frequency response characteristics make them potential candidates to replace conventional capacitors and function as alternating current (AC) line filters to rectify pulse energy or as current ripple filters in the kHz range. However, few papers have been published about the associated fundamental device components, architectures, and correct characterization of MSCs applied in filter applications. In addition, it is a huge challenge to achieve a balance between capacitance and frequency response, not yet to be overcome. This review comprehensively summarizes recent advances in MSCs for AC line-filtering, from fundamental mechanisms to appropriate characterization and emerging applications. Special attention is given to progress in microfabrication strategies, electrode materials, and electrolytes for high-frequency MSCs. We also present perspectives and insights into the development of MSCs in different frequency ranges for AC line-filtering applications.
  • ● The fundamental introduction and performance evaluation specification of MSCs as FCs are given out in detail.
    ● The key challenges and possible approaches for achieving highperformance MSCs as FCs are discussed according to frequency regions.
    ● The different electrolytes are discussed to clarify their influence on MSCs in voltage windows and frequency characteristics.
    ● The various electrode structures and their advantages are analyzed to ensure the rapid response, where the highly ordered materials are most desirable for high-frequency MSCs.
    1 X. Feng and X. Shi contributed equally to this manuscript.
  • loading
  • [1]
    Y. Chen, Y. Cheng, Y. Jie, et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator, Energy Environ. Sci. 12 (2019) 2678–2684. doi: 10.1039/C9EE01245A
    [2]
    Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors, Energy Environ. Sci. 8 (2015) 2250–2282. doi: 10.1039/C5EE01532D
    [3]
    G. Zhu, B. Peng, J. Chen, et al., Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications, Nano Energy 14 (2015) 126–138. doi: 10.1016/j.nanoen.2014.11.050
    [4]
    X. Chen, H. Gao, G. Hai, et al., Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy, Energy Storage Mater 26 (2020) 129–137. doi: 10.1016/j.ensm.2019.12.029
    [5]
    C. Wu, A.C. Wang, W. Ding, et al., Triboelectric nanogenerator: a foundation of the energy for the new era, Adv. Energy Mater. 9 (2019) 1802906. doi: 10.1002/aenm.201802906
    [6]
    W. Liu, Z. Wang, G. Wang, et al., Integrated charge excitation triboelectric nanogenerator, Nat. Commun. 10 (2019) 1426. doi: 10.1038/s41467-019-09464-8
    [7]
    J. Luo, Z.L. Wang, Recent advances in triboelectric nanogenerator based selfcharging power systems, Energy Storage Mater 23 (2019) 617–628. doi: 10.1016/j.ensm.2019.03.009
    [8]
    Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting, Nano Energy 39 (2017) 306–320. doi: 10.1016/j.nanoen.2017.06.048
    [9]
    X. Liang, R. Qi, M. Zhao, et al., Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators, Energy Storage Mater 24 (2020) 297–303. doi: 10.1016/j.ensm.2019.08.002
    [10]
    X. Cheng, W. Tang, Y. Song, et al., Power management and effective energy storage of pulsed output from triboelectric nanogenerator, Nano Energy 61 (2019) 517–532. doi: 10.1016/j.nanoen.2019.04.096
    [11]
    Q. Jiang, C. Wu, Z. Wang, et al., MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit, Nano Energy 45 (2018) 266–272. doi: 10.1016/j.nanoen.2018.01.004
    [12]
    M. Zhao, J. Nie, H. Li, et al., High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators, Nano Energy 55 (2019) 447–453. doi: 10.1016/j.nanoen.2018.11.016
    [13]
    F. Xi, Y. Pang, W. Li, et al., Universal power management strategy for triboelectric nanogenerator, Nano Energy 37 (2017) 168–176. doi: 10.1016/j.nanoen.2017.05.027
    [14]
    Y.Y. Ba, J.F. Bao, Z.Y. Wang, et al., Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator, Nano Energy 82 (2021) 105730. doi: 10.1016/j.nanoen.2020.105730
    [15]
    J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance, Science 329 (2010) 1637–1639. doi: 10.1126/science.1194372
    [16]
    Z.S. Wu, Z. Liu, K. Parvez, et al., Ultrathin printable graphene supercapacitors with AC line-filtering performance, Adv. Mater. 27 (2015) 3669–3675. doi: 10.1002/adma.201501208
    [17]
    F. Wang, X. Wu, X. Yuan, et al., Latest advances in supercapacitors: from new electrode materials to novel device designs, Chem. Soc. Rev. 46 (2017) 6816–6854. doi: 10.1039/C7CS00205J
    [18]
    G.S. Gund, J.H. Park, R. Harpalsinh, et al., MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors, Joule 3 (2019) 164–176. doi: 10.1016/j.joule.2018.10.017
    [19]
    C.W. Wu, B. Unnikrishnan, I.W.P. Chen, et al., Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application, Energy Storage Mater 25 (2020) 563–571. doi: 10.1016/j.ensm.2019.09.026
    [20]
    A.M.R. Amaral, A.J.M. Cardoso, A simple offline technique for evaluating the condition of aluminum-electrolytic-capacitors, IEEE Trans. Ind. Electron. 56 (2009) 3230–3237. doi: 10.1109/TIE.2009.2022077
    [21]
    T.S. Mathis, N. Kurra, X. Wang, et al., Energy storage data reporting in perspectiveguidelines for interpreting the performance of electrochemical energy storage systems, Adv. Energy Mater. 9 (2019) 1902007. doi: 10.1002/aenm.201902007
    [22]
    S. Zheng, X. Shi, P. Das, et al., The road towards planar microbatteries and microsupercapacitors: from 2D to 3D device geometries, Adv. Mater. 31 (2019), e1900583. doi: 10.1002/adma.201900583
    [23]
    Z.S. Wu, K. Parvez, X. Feng, et al., Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nat. Commun. 4 (2013) 2487. doi: 10.1038/ncomms3487
    [24]
    Q. Jiang, N. Kurra, K. Maleski, et al., On-chip MXene microsupercapacitors for ACline filtering applications, Adv. Energy Mater. 9 (2019) 1901061.
    [25]
    N. Liu, Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture, Small 13 (2017) 1701989. doi: 10.1002/smll.201701989
    [26]
    Y. Yuan, L. Jiang, X. Li, et al., Laser photonic-reduction stamping for graphenebased micro-supercapacitors ultrafast fabrication, Nat. Commun. 11 (2020) 6185. doi: 10.1038/s41467-020-19985-2
    [27]
    J. Wang, X. Wang, S.W. Lee, et al., Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated Cu nanowire network structure as the electrode, ACS Appl. Mater. Interfaces 11 (2019) 40481–40489. doi: 10.1021/acsami.9b13417
    [28]
    Y. Yoo, S. Kim, B. Kim, et al., 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering, J. Mater. Chem. A 3 (2015) 11801–11806. doi: 10.1039/C5TA02073E
    [29]
    S. Xu, W. Liu, B. Hu, et al., Circuit-integratable high-frequency micro supercapacitors with filter/oscillator demonstrations, Nano Energy 58 (2019) 803–810. doi: 10.1016/j.nanoen.2019.01.079
    [30]
    F. Chi, C. Li, Q. Zhou, et al., Graphene-based organic electrochemical capacitors for AC line filtering, Adv. Energy Mater. 7 (2017) 1700591. doi: 10.1002/aenm.201700591
    [31]
    D. Zhao, K. Jiang, J. Li, et al., Supercapacitors with alternating current line-filtering performance, BMC Mater 2 (2020) 3. doi: 10.1186/s42833-020-0009-z
    [32]
    M. Zhu, J. Wang, B.C. Holloway, et al., A mechanism for carbon nanosheet formation, Carbon 45 (2007) 2229–2234. doi: 10.1016/j.carbon.2007.06.017
    [33]
    N. Islam, J. Warzywoda, Z. Fan, Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors, Nano-Micro Lett. 10 (2017) 9.
    [34]
    Y.J. Kang, Y. Yoo, W. Kim, 3-V solid-state flexible supercapacitors with ionicliquid-based polymer gel electrolyte for AC line filtering, ACS Appl. Mater. Interfaces 8 (2016) 13909–13917. doi: 10.1021/acsami.6b02690
    [35]
    J. Ye, H. Tan, S. Wu, et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output, Adv. Mater. 30 (2018), e1801384. doi: 10.1002/adma.201801384
    [36]
    Z. Zhang, M. Liu, X. Tian, et al., Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance, Nano Energy 50 (2018) 182–191. doi: 10.1016/j.nanoen.2018.05.030
    [37]
    W. Li, N. Islam, S. Azam, et al., ZIF-67-derived edge-oriented graphene clusters coupled with carbon nanotubes containing encapsulated Co nanoparticles for high-frequency electrochemical capacitors, Sustain. Energy Fuels 3 (2019) 3029–3037. doi: 10.1039/C9SE00503J
    [38]
    Y. Yoo, M. -S. Kim, J. -K. Kim, et al., Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering, J. Mater. Chem. A 4 (2016) 5062–5068. doi: 10.1039/C6TA00921B
    [39]
    C. Zhong, Y. Deng, W. Hu, et al., A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484–7539.
    [40]
    M. Wu, F. Chi, H. Geng, et al., Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors, Nat. Commun. 10 (2019) 2855. doi: 10.1038/s41467-019-10886-7
    [41]
    C. Shen, S. Xu, Y. Xie, et al., A review of on-chip micro supercapacitors for integrated self-powering systems, J. Microelectromech. Syst. 26 (2017) 949–965. doi: 10.1109/JMEMS.2017.2723018
    [42]
    D. Pech, M. Brunet, H. Durou, et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (2010) 651–654. doi: 10.1038/nnano.2010.162
    [43]
    A. Eftekhari, The mechanism of ultrafast supercapacitors, J. Mater. Chem. A 6 (2018) 2866–2876. doi: 10.1039/C7TA10013B
    [44]
    P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc. 150 (2003) A292. doi: 10.1149/1.1543948
    [45]
    P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343 (2014) 1210. doi: 10.1126/science.1249625
    [46]
    R.M. Tamgadge, S. Kumar, A. Shukla, A kilohertz frequency response pseudocapacitor, J. Power Sources 465 (2020) 228242. doi: 10.1016/j.jpowsour.2020.228242
    [47]
    K. Sheng, Y. Sun, C. Li, et al., Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep. 2 (2012) 247. doi: 10.1038/srep00247
    [48]
    J. Lin, C. Zhang, Z. Yan, et al., 3-Dimensional graphene carbon nanotube carpetbased microsupercapacitors with high electrochemical performance, Nano Lett. 13 (2013) 72–78. doi: 10.1021/nl3034976
    [49]
    G. Ren, X. Pan, S. Bayne, et al., Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam, Carbon 71 (2014) 94–101. doi: 10.1016/j.carbon.2014.01.017
    [50]
    K.U. Laszczyk, K. Kobashi, S. Sakurai, et al., Lithographically integrated microsupercapacitors for compact, high performance, and designable energy circuits, Adv. Energy Mater. 5 (2015) 1500741. doi: 10.1002/aenm.201500741
    [51]
    R.Z. Li, R. Peng, K.D. Kihm, et al., High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes, Energy Environ. Sci. 9 (2016) 1458–1467. doi: 10.1039/C5EE03637B
    [52]
    Z.S. Wu, Y.Z. Tan, S. Zheng, et al., Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors, J. Am. Chem. Soc. 139 (2017) 4506–4512. doi: 10.1021/jacs.7b00805
    [53]
    J. Pu, X. Wang, R. Xu, et al., Highly flexible, foldable, and rollable microsupercapacitors on an ultrathin polyimide substrate with high power density, Microsyst. Nanoeng. 4 (2018) 16. doi: 10.1038/s41378-018-0016-3
    [54]
    C. Chen, J. Cao, X. Wang, et al., Highly stretchable integrated system for microsupercapacitor with AC line filtering and UV detector, Nano Energy 42 (2017) 187–194. doi: 10.1016/j.nanoen.2017.10.056
    [55]
    N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering, Nano Energy 13 (2015) 500–508. doi: 10.1016/j.nanoen.2015.03.018
    [56]
    J. Lim, U.N. Maiti, N.Y. Kim, et al., Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures, Nat. Commun. 7 (2016) 10364. doi: 10.1038/ncomms10364
    [57]
    K. Gao, S. Wang, W. Liu, et al., All fiber based electrochemical capacitor towards wearable AC line filters with outstanding rate capability, ChemElectroChem 6 (2019) 1450–1457. doi: 10.1002/celc.201801593
    [58]
    X. Wang, Q. Zhang, On‐chip microsupercapacitors: from material to fabrication, Energy Technol. 7 (2019) 1900820. doi: 10.1002/ente.201900820
    [59]
    P. Zhang, F. Wang, S. Yang, et al., Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications, Energy Storage Mater 28 (2020) 160–187. doi: 10.1016/j.ensm.2020.02.029
    [60]
    H. Hu, Z. Pei, C. Ye, Recent advances in designing and fabrication of planar microsupercapacitors for on-chip energy storage, Energy Storage Mater 1 (2015) 82–102. doi: 10.1016/j.ensm.2015.08.005
    [61]
    W. Si, C. Yan, Y. Chen, et al., On chip, all solid-state and flexible microsupercapacitors with high performance based on MnOx/Au multilayers, Energy Environ. Sci. 6 (2013) 3218. doi: 10.1039/c3ee41286e
    [62]
    J. Cai, C. Lv, A. Watanabe, Laser direct writing and selective metallization of metallic circuits for integrated wireless devices, ACS Appl. Mater. Interfaces 10 (2017) 915–924.
    [63]
    X. Mu, J. Du, Y. Li, et al., One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors, Carbon 144 (2019) 228–234. doi: 10.1016/j.carbon.2018.12.039
    [64]
    R. Agrawal, C. Wang, On-chip asymmetric microsupercapacitors combining reduced graphene oxide and manganese oxide for high energy-power tradeoff, Micromachines 9 (2018) 399. doi: 10.3390/mi9080399
    [65]
    J. Han, Y.C. Lin, L. Chen, et al., On-chip micro-pseudocapacitors for ultrahigh energy and power delivery, Adv. Sci. 2 (2015) 1500067. doi: 10.1002/advs.201500067
    [66]
    O. Pitkanen, T. Jarvinen, H. Cheng, et al., On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors, Sci. Rep. 7 (2017) 16594. doi: 10.1038/s41598-017-16604-x
    [67]
    X. Shi, L. Tian, S. Wang, et al., Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating, J. Energy Chem. 52 (2021) 284–290. doi: 10.1016/j.jechem.2020.04.064
    [68]
    Y. Zhang, T. Ji, S. Hou, et al., All-printed solid-state substrate-versatile and highperformance micro-supercapacitors for in situ fabricated transferable and wearable energy storage via multi-material 3D printing, J. Power Sources 403 (2018) 109–117. doi: 10.1016/j.jpowsour.2018.09.096
    [69]
    X. Li, H. Li, X. Fan, et al., 3D‐printed stretchable micro‐supercapacitor with remarkable areal performance, Adv. Energy Mater. 10 (2020) 1903794. doi: 10.1002/aenm.201903794
    [70]
    W. Liu, C. Lu, X. Wang, et al., High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film, ACS Nano 9 (2015) 1528–1542. doi: 10.1021/nn5060442
    [71]
    H. Xiao, Z.S. Wu, L. Chen, et al., One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density, ACS Nano 11 (2017) 7284–7292. doi: 10.1021/acsnano.7b03288
    [72]
    H. Li, S. Liu, X. Li, et al., Screen-printing fabrication of high volumetric energy density micro-supercapacitors based on high-resolution thixotropic-ternary hybrid interdigital micro-electrodes, Mater. Chem. Front. 3 (2019) 626–635. doi: 10.1039/C8QM00639C
    [73]
    C. Zhang, H. Du, K. Ma, et al., Ultrahigh-rate supercapacitor based on carbon nanoonion/graphene hybrid structure toward compact alternating current filter, Adv. Energy Mater. 10 (2020) 2002132. doi: 10.1002/aenm.202002132
    [74]
    J. Gao, C. Shao, S. Shao, et al., Laser-assisted large-scale fabrication of all-solidstate asymmetrical micro-supercapacitor array, Small 14 (2018), e1801809. doi: 10.1002/smll.201801809
    [75]
    S. Kwon, Y. Yoon, J. Ahn, et al., Facile laser fabrication of high quality graphenebased microsupercapacitors with large capacitance, Carbon 137 (2018) 136–145. doi: 10.1016/j.carbon.2018.05.031
    [76]
    A. Morag, N. Maman, N. Froumin, et al., Nanostructured nickel/ruthenium/ ruthenium‐oxide supercapacitor displaying exceptional high frequency response, Adv. Electron. Mater. 6 (2019) 1900844.
    [77]
    B. Shen, J. Lang, R. Guo, et al., Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes, ACS Appl. Mater. Interfaces 7 (2015) 25378–25389. doi: 10.1021/acsami.5b07909
    [78]
    W.W. Liu, Y.Q. Feng, X.B. Yan, et al., Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111–4122. doi: 10.1002/adfm.201203771
    [79]
    Y. Xie, H. Zhang, H. Huang, et al., High-voltage asymmetric MXene-based on-chip micro-supercapacitors, Nano Energy 74 (2020) 104928. doi: 10.1016/j.nanoen.2020.104928
    [80]
    D. Premathilake, R.A. Outlaw, S.G. Parler, et al., Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminum, Carbon 111 (2017) 231–237. doi: 10.1016/j.carbon.2016.09.080
    [81]
    G. Ren, S. Li, Z.X. Fan, et al., Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes, J. Power Sources 325 (2016) 152–160. doi: 10.1016/j.jpowsour.2016.06.021
    [82]
    S. Zheng, Z. Li, Z.S. Wu, et al., High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors, ACS Nano 11 (2017) 4009–4016. doi: 10.1021/acsnano.7b00553
    [83]
    J. Yan, S. Li, B. Lan, et al., Rational design of nanostructured electrode materials toward multifunctional supercapacitors, Adv. Funct. Mater. 30 (2020) 1902564. doi: 10.1002/adfm.201902564
    [84]
    S. Lin, J. Tang, K. Zhang, et al., High-rate supercapacitor using magnetically aligned graphene, J. Power Sources 482 (2021) 228995. doi: 10.1016/j.jpowsour.2020.228995
    [85]
    Y. Ma, M. Wang, N. Kim, et al., A flexible supercapacitor based on vertically oriented 'Graphene Forest' electrodes, J. Mater. Chem. A 3 (2015) 21875–21881. doi: 10.1039/C5TA05687J
    [86]
    M.F. El-Kady, M. Ihns, M. Li, et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 4233–4238. doi: 10.1073/pnas.1420398112
    [87]
    D.T. Pham, T.H. Lee, D.H. Luong, et al., Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors, ACS Nano 9 (2015) 2018–2027. doi: 10.1021/nn507079x
    [88]
    D. Banerjee, K.J. Sankaran, S. Deshmukh, et al., 3D hierarchical boron-doped diamond-multilayered graphene nanowalls as an efficient supercapacitor electrode, J. Phys. Chem. C 123 (2019) 15458–15466. doi: 10.1021/acs.jpcc.9b03628
    [89]
    H. Ning, J.H. Pikul, R. Zhang, et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 6573–6578. doi: 10.1073/pnas.1423889112
    [90]
    T. Cheng, Y.W. Wu, Y.L. Chen, et al., Inkjet-printed high-performance flexible micro-supercapacitors with porous nanofiber-like electrode structures, Small 15 (2019) 1901830. doi: 10.1002/smll.201901830
    [91]
    Y. Gao, S. Zheng, H. Fu, et al., Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors, Carbon 168 (2020) 701–709. doi: 10.1016/j.carbon.2020.06.063
    [92]
    J. Qin, S. Wang, F. Zhou, et al., 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte, Energy Storage Mater 18 (2019) 397–404. doi: 10.1016/j.ensm.2018.12.022
    [93]
    Z. Wu, L. Li, Z. Lin, et al., Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene, Sci. Rep. 5 (2015), 10983-10983. doi: 10.1038/srep10983
    [94]
    M. Zhang, Q. Zhou, J. Chen, et al., An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT: PSS films for AC linefiltering, Energy Environ. Sci. 9 (2016) 2005–2010. doi: 10.1039/C6EE00615A
    [95]
    J. Xiao, H. Zhan, X. Wang, et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics, Nat. Nanotechnol. 15 (2020) 683. doi: 10.1038/s41565-020-0704-7
    [96]
    X. Shuai, Z. Bo, J. Kong, et al., Wettability of vertically-oriented graphenes with different intersheet distances, RSC Adv. 7 (2017) 2667–2675. doi: 10.1039/C6RA27428E
    [97]
    Q. Zhou, M. Zhang, J. Chen, et al., Nitrogen-doped holey graphene film-based ultrafast electrochemical capacitors, ACS Appl. Mater. Interfaces 8 (2016) 20741–20747. doi: 10.1021/acsami.6b05601
    [98]
    Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance, ACS Nano 9 (2015) 7248–7255. doi: 10.1021/acsnano.5b02075
    [99]
    A. Fakharuddin, H. Li, F. Di Giacomo, et al., Fiber-shaped electronic devices, Adv. Energy Mater. 11 (2021) 2101443. doi: 10.1002/aenm.202101443
    [100]
    S. Zhai, H.E. Karahan, C. Wang, et al., 1D supercapacitors for emerging electronics: current status and future directions, Adv. Mater. 32 (2020) 1902387. doi: 10.1002/adma.201902387
    [101]
    S. Zhai, N. Wang, X. Tan, et al., Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery, Adv. Funct. Mater. 31 (2021) 2008894. doi: 10.1002/adfm.202008894
    [102]
    M. Busch, T. Hofmann, B. Frick, et al., Ionic liquid dynamics in nanoporous carbon: a pore-size- and temperature-dependent neutron spectroscopy study on supercapacitor materials, Phys. Rev. Lett. 4 (2020), 055401.
    [103]
    Q. Gou, S. Zhao, J. Wang, et al., Recent advances on boosting the cell voltage of aqueous supercapacitors, Nano-Micro Lett. 12 (2020) 98. doi: 10.1007/s40820-020-00430-4
    [104]
    M.Z. Iqbal, S. Zakar, S.S. Haider, Role of aqueous electrolytes on the performance of electrochemical energy storage device, J. Electroanal. Chem. 858 (2020) 113793. doi: 10.1016/j.jelechem.2019.113793
    [105]
    J. Lee, M.J. Panzer, Y. He, et al., Ion gel gated polymer thin-film transistors, J. Am. Chem. Soc. 129 (2007) 4532–4533. doi: 10.1021/ja070875e
    [106]
    B. Pal, S. Yang, S. Ramesh, et al., Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Adv. 1 (2019) 3807–3835. doi: 10.1039/C9NA00374F
    [107]
    E. Kovalska, C. Kocabas, Organic electrolytes for graphene-based supercapacitor: liquid, gel or solid, Mater. Today Commun. 7 (2016) 155–160. doi: 10.1016/j.mtcomm.2016.04.013
    [108]
    A. Eftekhari, Supercapacitors utilising ionic liquids, Energy Storage Mater 9 (2017) 47–69.
    [109]
    S. Zheng, J. Ma, Z.S. Wu, et al., All-solid-state flexible planar lithium ion microcapacitors, Energy Environ. Sci. 11 (2018) 2001–2009. doi: 10.1039/C8EE00855H
    [110]
    Y. Yoo, J. Park, M. -S. Kim, et al., Development of 2.8 V Ketjen black supercapacitors with high rate capabilities for AC line filtering, J. Power Sources 360 (2017) 383–390. doi: 10.1016/j.jpowsour.2017.06.032
    [111]
    P. Yang, D. Chao, C. Zhu, et al., Ultrafast-charging supercapacitors based on cornlike titanium nitride nanostructures, Adv. Sci. 3 (2016) 1500299. doi: 10.1002/advs.201500299
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (193) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return