Citation: | Feng Xin, Shi Xiaoyu, Ning Jing, Wang Dong, Zhang Jincheng, Hao Yue, Wu Zhong-Shuai. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications[J]. eScience, 2021, 1(2): 124-140. doi: 10.1016/j.esci.2021.11.005 |
[1] |
Y. Chen, Y. Cheng, Y. Jie, et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator, Energy Environ. Sci. 12 (2019) 2678–2684. doi: 10.1039/C9EE01245A
|
[2] |
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors, Energy Environ. Sci. 8 (2015) 2250–2282. doi: 10.1039/C5EE01532D
|
[3] |
G. Zhu, B. Peng, J. Chen, et al., Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications, Nano Energy 14 (2015) 126–138. doi: 10.1016/j.nanoen.2014.11.050
|
[4] |
X. Chen, H. Gao, G. Hai, et al., Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy, Energy Storage Mater 26 (2020) 129–137. doi: 10.1016/j.ensm.2019.12.029
|
[5] |
C. Wu, A.C. Wang, W. Ding, et al., Triboelectric nanogenerator: a foundation of the energy for the new era, Adv. Energy Mater. 9 (2019) 1802906. doi: 10.1002/aenm.201802906
|
[6] |
W. Liu, Z. Wang, G. Wang, et al., Integrated charge excitation triboelectric nanogenerator, Nat. Commun. 10 (2019) 1426. doi: 10.1038/s41467-019-09464-8
|
[7] |
J. Luo, Z.L. Wang, Recent advances in triboelectric nanogenerator based selfcharging power systems, Energy Storage Mater 23 (2019) 617–628. doi: 10.1016/j.ensm.2019.03.009
|
[8] |
Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting, Nano Energy 39 (2017) 306–320. doi: 10.1016/j.nanoen.2017.06.048
|
[9] |
X. Liang, R. Qi, M. Zhao, et al., Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators, Energy Storage Mater 24 (2020) 297–303. doi: 10.1016/j.ensm.2019.08.002
|
[10] |
X. Cheng, W. Tang, Y. Song, et al., Power management and effective energy storage of pulsed output from triboelectric nanogenerator, Nano Energy 61 (2019) 517–532. doi: 10.1016/j.nanoen.2019.04.096
|
[11] |
Q. Jiang, C. Wu, Z. Wang, et al., MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit, Nano Energy 45 (2018) 266–272. doi: 10.1016/j.nanoen.2018.01.004
|
[12] |
M. Zhao, J. Nie, H. Li, et al., High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators, Nano Energy 55 (2019) 447–453. doi: 10.1016/j.nanoen.2018.11.016
|
[13] |
F. Xi, Y. Pang, W. Li, et al., Universal power management strategy for triboelectric nanogenerator, Nano Energy 37 (2017) 168–176. doi: 10.1016/j.nanoen.2017.05.027
|
[14] |
Y.Y. Ba, J.F. Bao, Z.Y. Wang, et al., Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator, Nano Energy 82 (2021) 105730. doi: 10.1016/j.nanoen.2020.105730
|
[15] |
J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance, Science 329 (2010) 1637–1639. doi: 10.1126/science.1194372
|
[16] |
Z.S. Wu, Z. Liu, K. Parvez, et al., Ultrathin printable graphene supercapacitors with AC line-filtering performance, Adv. Mater. 27 (2015) 3669–3675. doi: 10.1002/adma.201501208
|
[17] |
F. Wang, X. Wu, X. Yuan, et al., Latest advances in supercapacitors: from new electrode materials to novel device designs, Chem. Soc. Rev. 46 (2017) 6816–6854. doi: 10.1039/C7CS00205J
|
[18] |
G.S. Gund, J.H. Park, R. Harpalsinh, et al., MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors, Joule 3 (2019) 164–176. doi: 10.1016/j.joule.2018.10.017
|
[19] |
C.W. Wu, B. Unnikrishnan, I.W.P. Chen, et al., Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application, Energy Storage Mater 25 (2020) 563–571. doi: 10.1016/j.ensm.2019.09.026
|
[20] |
A.M.R. Amaral, A.J.M. Cardoso, A simple offline technique for evaluating the condition of aluminum-electrolytic-capacitors, IEEE Trans. Ind. Electron. 56 (2009) 3230–3237. doi: 10.1109/TIE.2009.2022077
|
[21] |
T.S. Mathis, N. Kurra, X. Wang, et al., Energy storage data reporting in perspectiveguidelines for interpreting the performance of electrochemical energy storage systems, Adv. Energy Mater. 9 (2019) 1902007. doi: 10.1002/aenm.201902007
|
[22] |
S. Zheng, X. Shi, P. Das, et al., The road towards planar microbatteries and microsupercapacitors: from 2D to 3D device geometries, Adv. Mater. 31 (2019), e1900583. doi: 10.1002/adma.201900583
|
[23] |
Z.S. Wu, K. Parvez, X. Feng, et al., Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nat. Commun. 4 (2013) 2487. doi: 10.1038/ncomms3487
|
[24] |
Q. Jiang, N. Kurra, K. Maleski, et al., On-chip MXene microsupercapacitors for ACline filtering applications, Adv. Energy Mater. 9 (2019) 1901061.
|
[25] |
N. Liu, Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture, Small 13 (2017) 1701989. doi: 10.1002/smll.201701989
|
[26] |
Y. Yuan, L. Jiang, X. Li, et al., Laser photonic-reduction stamping for graphenebased micro-supercapacitors ultrafast fabrication, Nat. Commun. 11 (2020) 6185. doi: 10.1038/s41467-020-19985-2
|
[27] |
J. Wang, X. Wang, S.W. Lee, et al., Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated Cu nanowire network structure as the electrode, ACS Appl. Mater. Interfaces 11 (2019) 40481–40489. doi: 10.1021/acsami.9b13417
|
[28] |
Y. Yoo, S. Kim, B. Kim, et al., 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering, J. Mater. Chem. A 3 (2015) 11801–11806. doi: 10.1039/C5TA02073E
|
[29] |
S. Xu, W. Liu, B. Hu, et al., Circuit-integratable high-frequency micro supercapacitors with filter/oscillator demonstrations, Nano Energy 58 (2019) 803–810. doi: 10.1016/j.nanoen.2019.01.079
|
[30] |
F. Chi, C. Li, Q. Zhou, et al., Graphene-based organic electrochemical capacitors for AC line filtering, Adv. Energy Mater. 7 (2017) 1700591. doi: 10.1002/aenm.201700591
|
[31] |
D. Zhao, K. Jiang, J. Li, et al., Supercapacitors with alternating current line-filtering performance, BMC Mater 2 (2020) 3. doi: 10.1186/s42833-020-0009-z
|
[32] |
M. Zhu, J. Wang, B.C. Holloway, et al., A mechanism for carbon nanosheet formation, Carbon 45 (2007) 2229–2234. doi: 10.1016/j.carbon.2007.06.017
|
[33] |
N. Islam, J. Warzywoda, Z. Fan, Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors, Nano-Micro Lett. 10 (2017) 9.
|
[34] |
Y.J. Kang, Y. Yoo, W. Kim, 3-V solid-state flexible supercapacitors with ionicliquid-based polymer gel electrolyte for AC line filtering, ACS Appl. Mater. Interfaces 8 (2016) 13909–13917. doi: 10.1021/acsami.6b02690
|
[35] |
J. Ye, H. Tan, S. Wu, et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output, Adv. Mater. 30 (2018), e1801384. doi: 10.1002/adma.201801384
|
[36] |
Z. Zhang, M. Liu, X. Tian, et al., Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance, Nano Energy 50 (2018) 182–191. doi: 10.1016/j.nanoen.2018.05.030
|
[37] |
W. Li, N. Islam, S. Azam, et al., ZIF-67-derived edge-oriented graphene clusters coupled with carbon nanotubes containing encapsulated Co nanoparticles for high-frequency electrochemical capacitors, Sustain. Energy Fuels 3 (2019) 3029–3037. doi: 10.1039/C9SE00503J
|
[38] |
Y. Yoo, M. -S. Kim, J. -K. Kim, et al., Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering, J. Mater. Chem. A 4 (2016) 5062–5068. doi: 10.1039/C6TA00921B
|
[39] |
C. Zhong, Y. Deng, W. Hu, et al., A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484–7539.
|
[40] |
M. Wu, F. Chi, H. Geng, et al., Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors, Nat. Commun. 10 (2019) 2855. doi: 10.1038/s41467-019-10886-7
|
[41] |
C. Shen, S. Xu, Y. Xie, et al., A review of on-chip micro supercapacitors for integrated self-powering systems, J. Microelectromech. Syst. 26 (2017) 949–965. doi: 10.1109/JMEMS.2017.2723018
|
[42] |
D. Pech, M. Brunet, H. Durou, et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (2010) 651–654. doi: 10.1038/nnano.2010.162
|
[43] |
A. Eftekhari, The mechanism of ultrafast supercapacitors, J. Mater. Chem. A 6 (2018) 2866–2876. doi: 10.1039/C7TA10013B
|
[44] |
P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc. 150 (2003) A292. doi: 10.1149/1.1543948
|
[45] |
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343 (2014) 1210. doi: 10.1126/science.1249625
|
[46] |
R.M. Tamgadge, S. Kumar, A. Shukla, A kilohertz frequency response pseudocapacitor, J. Power Sources 465 (2020) 228242. doi: 10.1016/j.jpowsour.2020.228242
|
[47] |
K. Sheng, Y. Sun, C. Li, et al., Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep. 2 (2012) 247. doi: 10.1038/srep00247
|
[48] |
J. Lin, C. Zhang, Z. Yan, et al., 3-Dimensional graphene carbon nanotube carpetbased microsupercapacitors with high electrochemical performance, Nano Lett. 13 (2013) 72–78. doi: 10.1021/nl3034976
|
[49] |
G. Ren, X. Pan, S. Bayne, et al., Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam, Carbon 71 (2014) 94–101. doi: 10.1016/j.carbon.2014.01.017
|
[50] |
K.U. Laszczyk, K. Kobashi, S. Sakurai, et al., Lithographically integrated microsupercapacitors for compact, high performance, and designable energy circuits, Adv. Energy Mater. 5 (2015) 1500741. doi: 10.1002/aenm.201500741
|
[51] |
R.Z. Li, R. Peng, K.D. Kihm, et al., High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes, Energy Environ. Sci. 9 (2016) 1458–1467. doi: 10.1039/C5EE03637B
|
[52] |
Z.S. Wu, Y.Z. Tan, S. Zheng, et al., Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors, J. Am. Chem. Soc. 139 (2017) 4506–4512. doi: 10.1021/jacs.7b00805
|
[53] |
J. Pu, X. Wang, R. Xu, et al., Highly flexible, foldable, and rollable microsupercapacitors on an ultrathin polyimide substrate with high power density, Microsyst. Nanoeng. 4 (2018) 16. doi: 10.1038/s41378-018-0016-3
|
[54] |
C. Chen, J. Cao, X. Wang, et al., Highly stretchable integrated system for microsupercapacitor with AC line filtering and UV detector, Nano Energy 42 (2017) 187–194. doi: 10.1016/j.nanoen.2017.10.056
|
[55] |
N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering, Nano Energy 13 (2015) 500–508. doi: 10.1016/j.nanoen.2015.03.018
|
[56] |
J. Lim, U.N. Maiti, N.Y. Kim, et al., Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures, Nat. Commun. 7 (2016) 10364. doi: 10.1038/ncomms10364
|
[57] |
K. Gao, S. Wang, W. Liu, et al., All fiber based electrochemical capacitor towards wearable AC line filters with outstanding rate capability, ChemElectroChem 6 (2019) 1450–1457. doi: 10.1002/celc.201801593
|
[58] |
X. Wang, Q. Zhang, On‐chip microsupercapacitors: from material to fabrication, Energy Technol. 7 (2019) 1900820. doi: 10.1002/ente.201900820
|
[59] |
P. Zhang, F. Wang, S. Yang, et al., Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications, Energy Storage Mater 28 (2020) 160–187. doi: 10.1016/j.ensm.2020.02.029
|
[60] |
H. Hu, Z. Pei, C. Ye, Recent advances in designing and fabrication of planar microsupercapacitors for on-chip energy storage, Energy Storage Mater 1 (2015) 82–102. doi: 10.1016/j.ensm.2015.08.005
|
[61] |
W. Si, C. Yan, Y. Chen, et al., On chip, all solid-state and flexible microsupercapacitors with high performance based on MnOx/Au multilayers, Energy Environ. Sci. 6 (2013) 3218. doi: 10.1039/c3ee41286e
|
[62] |
J. Cai, C. Lv, A. Watanabe, Laser direct writing and selective metallization of metallic circuits for integrated wireless devices, ACS Appl. Mater. Interfaces 10 (2017) 915–924.
|
[63] |
X. Mu, J. Du, Y. Li, et al., One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors, Carbon 144 (2019) 228–234. doi: 10.1016/j.carbon.2018.12.039
|
[64] |
R. Agrawal, C. Wang, On-chip asymmetric microsupercapacitors combining reduced graphene oxide and manganese oxide for high energy-power tradeoff, Micromachines 9 (2018) 399. doi: 10.3390/mi9080399
|
[65] |
J. Han, Y.C. Lin, L. Chen, et al., On-chip micro-pseudocapacitors for ultrahigh energy and power delivery, Adv. Sci. 2 (2015) 1500067. doi: 10.1002/advs.201500067
|
[66] |
O. Pitkanen, T. Jarvinen, H. Cheng, et al., On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors, Sci. Rep. 7 (2017) 16594. doi: 10.1038/s41598-017-16604-x
|
[67] |
X. Shi, L. Tian, S. Wang, et al., Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating, J. Energy Chem. 52 (2021) 284–290. doi: 10.1016/j.jechem.2020.04.064
|
[68] |
Y. Zhang, T. Ji, S. Hou, et al., All-printed solid-state substrate-versatile and highperformance micro-supercapacitors for in situ fabricated transferable and wearable energy storage via multi-material 3D printing, J. Power Sources 403 (2018) 109–117. doi: 10.1016/j.jpowsour.2018.09.096
|
[69] |
X. Li, H. Li, X. Fan, et al., 3D‐printed stretchable micro‐supercapacitor with remarkable areal performance, Adv. Energy Mater. 10 (2020) 1903794. doi: 10.1002/aenm.201903794
|
[70] |
W. Liu, C. Lu, X. Wang, et al., High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film, ACS Nano 9 (2015) 1528–1542. doi: 10.1021/nn5060442
|
[71] |
H. Xiao, Z.S. Wu, L. Chen, et al., One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density, ACS Nano 11 (2017) 7284–7292. doi: 10.1021/acsnano.7b03288
|
[72] |
H. Li, S. Liu, X. Li, et al., Screen-printing fabrication of high volumetric energy density micro-supercapacitors based on high-resolution thixotropic-ternary hybrid interdigital micro-electrodes, Mater. Chem. Front. 3 (2019) 626–635. doi: 10.1039/C8QM00639C
|
[73] |
C. Zhang, H. Du, K. Ma, et al., Ultrahigh-rate supercapacitor based on carbon nanoonion/graphene hybrid structure toward compact alternating current filter, Adv. Energy Mater. 10 (2020) 2002132. doi: 10.1002/aenm.202002132
|
[74] |
J. Gao, C. Shao, S. Shao, et al., Laser-assisted large-scale fabrication of all-solidstate asymmetrical micro-supercapacitor array, Small 14 (2018), e1801809. doi: 10.1002/smll.201801809
|
[75] |
S. Kwon, Y. Yoon, J. Ahn, et al., Facile laser fabrication of high quality graphenebased microsupercapacitors with large capacitance, Carbon 137 (2018) 136–145. doi: 10.1016/j.carbon.2018.05.031
|
[76] |
A. Morag, N. Maman, N. Froumin, et al., Nanostructured nickel/ruthenium/ ruthenium‐oxide supercapacitor displaying exceptional high frequency response, Adv. Electron. Mater. 6 (2019) 1900844.
|
[77] |
B. Shen, J. Lang, R. Guo, et al., Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes, ACS Appl. Mater. Interfaces 7 (2015) 25378–25389. doi: 10.1021/acsami.5b07909
|
[78] |
W.W. Liu, Y.Q. Feng, X.B. Yan, et al., Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111–4122. doi: 10.1002/adfm.201203771
|
[79] |
Y. Xie, H. Zhang, H. Huang, et al., High-voltage asymmetric MXene-based on-chip micro-supercapacitors, Nano Energy 74 (2020) 104928. doi: 10.1016/j.nanoen.2020.104928
|
[80] |
D. Premathilake, R.A. Outlaw, S.G. Parler, et al., Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminum, Carbon 111 (2017) 231–237. doi: 10.1016/j.carbon.2016.09.080
|
[81] |
G. Ren, S. Li, Z.X. Fan, et al., Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes, J. Power Sources 325 (2016) 152–160. doi: 10.1016/j.jpowsour.2016.06.021
|
[82] |
S. Zheng, Z. Li, Z.S. Wu, et al., High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors, ACS Nano 11 (2017) 4009–4016. doi: 10.1021/acsnano.7b00553
|
[83] |
J. Yan, S. Li, B. Lan, et al., Rational design of nanostructured electrode materials toward multifunctional supercapacitors, Adv. Funct. Mater. 30 (2020) 1902564. doi: 10.1002/adfm.201902564
|
[84] |
S. Lin, J. Tang, K. Zhang, et al., High-rate supercapacitor using magnetically aligned graphene, J. Power Sources 482 (2021) 228995. doi: 10.1016/j.jpowsour.2020.228995
|
[85] |
Y. Ma, M. Wang, N. Kim, et al., A flexible supercapacitor based on vertically oriented 'Graphene Forest' electrodes, J. Mater. Chem. A 3 (2015) 21875–21881. doi: 10.1039/C5TA05687J
|
[86] |
M.F. El-Kady, M. Ihns, M. Li, et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 4233–4238. doi: 10.1073/pnas.1420398112
|
[87] |
D.T. Pham, T.H. Lee, D.H. Luong, et al., Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors, ACS Nano 9 (2015) 2018–2027. doi: 10.1021/nn507079x
|
[88] |
D. Banerjee, K.J. Sankaran, S. Deshmukh, et al., 3D hierarchical boron-doped diamond-multilayered graphene nanowalls as an efficient supercapacitor electrode, J. Phys. Chem. C 123 (2019) 15458–15466. doi: 10.1021/acs.jpcc.9b03628
|
[89] |
H. Ning, J.H. Pikul, R. Zhang, et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 6573–6578. doi: 10.1073/pnas.1423889112
|
[90] |
T. Cheng, Y.W. Wu, Y.L. Chen, et al., Inkjet-printed high-performance flexible micro-supercapacitors with porous nanofiber-like electrode structures, Small 15 (2019) 1901830. doi: 10.1002/smll.201901830
|
[91] |
Y. Gao, S. Zheng, H. Fu, et al., Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors, Carbon 168 (2020) 701–709. doi: 10.1016/j.carbon.2020.06.063
|
[92] |
J. Qin, S. Wang, F. Zhou, et al., 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte, Energy Storage Mater 18 (2019) 397–404. doi: 10.1016/j.ensm.2018.12.022
|
[93] |
Z. Wu, L. Li, Z. Lin, et al., Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene, Sci. Rep. 5 (2015), 10983-10983. doi: 10.1038/srep10983
|
[94] |
M. Zhang, Q. Zhou, J. Chen, et al., An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT: PSS films for AC linefiltering, Energy Environ. Sci. 9 (2016) 2005–2010. doi: 10.1039/C6EE00615A
|
[95] |
J. Xiao, H. Zhan, X. Wang, et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics, Nat. Nanotechnol. 15 (2020) 683. doi: 10.1038/s41565-020-0704-7
|
[96] |
X. Shuai, Z. Bo, J. Kong, et al., Wettability of vertically-oriented graphenes with different intersheet distances, RSC Adv. 7 (2017) 2667–2675. doi: 10.1039/C6RA27428E
|
[97] |
Q. Zhou, M. Zhang, J. Chen, et al., Nitrogen-doped holey graphene film-based ultrafast electrochemical capacitors, ACS Appl. Mater. Interfaces 8 (2016) 20741–20747. doi: 10.1021/acsami.6b05601
|
[98] |
Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance, ACS Nano 9 (2015) 7248–7255. doi: 10.1021/acsnano.5b02075
|
[99] |
A. Fakharuddin, H. Li, F. Di Giacomo, et al., Fiber-shaped electronic devices, Adv. Energy Mater. 11 (2021) 2101443. doi: 10.1002/aenm.202101443
|
[100] |
S. Zhai, H.E. Karahan, C. Wang, et al., 1D supercapacitors for emerging electronics: current status and future directions, Adv. Mater. 32 (2020) 1902387. doi: 10.1002/adma.201902387
|
[101] |
S. Zhai, N. Wang, X. Tan, et al., Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery, Adv. Funct. Mater. 31 (2021) 2008894. doi: 10.1002/adfm.202008894
|
[102] |
M. Busch, T. Hofmann, B. Frick, et al., Ionic liquid dynamics in nanoporous carbon: a pore-size- and temperature-dependent neutron spectroscopy study on supercapacitor materials, Phys. Rev. Lett. 4 (2020), 055401.
|
[103] |
Q. Gou, S. Zhao, J. Wang, et al., Recent advances on boosting the cell voltage of aqueous supercapacitors, Nano-Micro Lett. 12 (2020) 98. doi: 10.1007/s40820-020-00430-4
|
[104] |
M.Z. Iqbal, S. Zakar, S.S. Haider, Role of aqueous electrolytes on the performance of electrochemical energy storage device, J. Electroanal. Chem. 858 (2020) 113793. doi: 10.1016/j.jelechem.2019.113793
|
[105] |
J. Lee, M.J. Panzer, Y. He, et al., Ion gel gated polymer thin-film transistors, J. Am. Chem. Soc. 129 (2007) 4532–4533. doi: 10.1021/ja070875e
|
[106] |
B. Pal, S. Yang, S. Ramesh, et al., Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Adv. 1 (2019) 3807–3835. doi: 10.1039/C9NA00374F
|
[107] |
E. Kovalska, C. Kocabas, Organic electrolytes for graphene-based supercapacitor: liquid, gel or solid, Mater. Today Commun. 7 (2016) 155–160. doi: 10.1016/j.mtcomm.2016.04.013
|
[108] |
A. Eftekhari, Supercapacitors utilising ionic liquids, Energy Storage Mater 9 (2017) 47–69.
|
[109] |
S. Zheng, J. Ma, Z.S. Wu, et al., All-solid-state flexible planar lithium ion microcapacitors, Energy Environ. Sci. 11 (2018) 2001–2009. doi: 10.1039/C8EE00855H
|
[110] |
Y. Yoo, J. Park, M. -S. Kim, et al., Development of 2.8 V Ketjen black supercapacitors with high rate capabilities for AC line filtering, J. Power Sources 360 (2017) 383–390. doi: 10.1016/j.jpowsour.2017.06.032
|
[111] |
P. Yang, D. Chao, C. Zhu, et al., Ultrafast-charging supercapacitors based on cornlike titanium nitride nanostructures, Adv. Sci. 3 (2016) 1500299. doi: 10.1002/advs.201500299
|