Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Li Xiang, Zhao Ruxin, Fu Yongzhu, Manthiram Arumugam. Nitrate additives for lithium batteries: Mechanisms, applications, and prospects[J]. eScience, 2021, 1(2): 108-123. doi: 10.1016/j.esci.2021.12.006
Citation: Li Xiang, Zhao Ruxin, Fu Yongzhu, Manthiram Arumugam. Nitrate additives for lithium batteries: Mechanisms, applications, and prospects[J]. eScience, 2021, 1(2): 108-123. doi: 10.1016/j.esci.2021.12.006

Nitrate additives for lithium batteries: Mechanisms, applications, and prospects

doi: 10.1016/j.esci.2021.12.006
More Information
  • Corresponding author: E-mail addresses: yfu@zzu.edu.cn (Y. Fu); E-mail addresses: manth@austin.utexas.edu (A. Manthiram)
  • Received Date: 2021-10-19
  • Revised Date: 2021-11-26
  • Accepted Date: 2021-12-23
  • Available Online: 2021-12-29
  • Lithium-metal batteries (LMBs) are considered as one of the most promising energy storage devices due to the high energy density and low reduction potential of the Li-metal anode. However, the growth of lithium dendrites results in accumulated dead Li and safety issues, limiting the practical application of LMBs. LiNO3 is a well-known additive in lithium–sulfur batteries to regulate the solid–electrolyte interphase (SEI), effectively suppressing the redox shuttle of polysulfides. Recently, other nitrates have been investigated in various electrolyte and battery systems, yielding improved SEI stability and cycling performance. In this review, we provide an overview of various nitrates, including LiNO3 for lithium batteries, focusing on their mechanisms and performance. We first discuss the effect of nitrate anions on SEI formation, as well as the cathode–electrolyte interphase (CEI). The solvation behavior regulated by nitrates is also extensively explored. Some strategies to improve the solubility of LiNO3 in ester-based electrolytes are then summarized, followed by a discussion of recent progress in the application of nitrates in different systems. Finally, further research directions are presented, along with challenges. This review provides a comprehensive understanding of nitrates and affords new and interesting ideas for the design of better electrolytes and battery systems.
  • ● Other nitrates besides LiNO3 are reviewed.
    ● The effect of nitrates as additive in lithium batteries is summarized from the aspects of NO3- and cations.
    ● The applications of nitrates in different electrolytes and battery systems are summed up.
    ● Other applications of nitrates besides as additives are introduced.
    ● Various methods to improve the solubility of nitrates in ester-based electrolyte are presented.
    1 These authors contributed equally.
  • loading
  • [1]
    J. Liu, Z. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy 4 (2019) 180–186. doi: 10.1038/s41560-019-0338-x
    [2]
    D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol. 12 (2017) 194–206. doi: 10.1038/nnano.2017.16
    [3]
    Y.F. Ye, M.K. Song, Y. Xu, et al., Lithium nitrate: a double-edged sword in the rechargeable lithium-sulfur cell, Energy Storage Mater. 16 (2019) 498–504. doi: 10.1016/j.ensm.2018.09.022
    [4]
    M. Baek, H. Shin, K. Char, et al., New high donor electrolyte for lithium-sulfur batteries, Adv. Mater. 32 (2020) 2005022. doi: 10.1002/adma.202005022
    [5]
    X.Q. Zhang, X. Chen, X.B. Cheng, et al., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes, Angew. Chem. Int. Ed. 57 (2018) 5301–5305. doi: 10.1002/anie.201801513
    [6]
    W. Zhang, Q. Wu, J. Huang, et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries, Adv. Mater. 32 (2020) 2001740. doi: 10.1002/adma.202001740
    [7]
    S. Liu, X. Ji, N. Piao, et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes, Angew. Chem. Int. Ed. 60 (2021) 3661–3671. doi: 10.1002/anie.202012005
    [8]
    R. Zhao, X. Li, Y. Si, et al., Cu(NO3)2 as efficient electrolyte additive for 4 V class Li metal batteries with ultrahigh stability, Energy Storage Mater. 37 (2021) 1–7. doi: 10.1016/j.ensm.2021.01.030
    [9]
    X. Li, S. Guo, H. Deng, et al., An ultrafast rechargeable lithium metal battery, J. Mater. Chem. A 6 (2018) 15517–15522. doi: 10.1039/C8TA05354E
    [10]
    A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res. 46 (2013) 1125–1134. doi: 10.1021/ar300179v
    [11]
    W.J. Chen, B.Q. Li, C.X. Zhao, et al., Electrolyte regulation towards stable lithiummetal anodes in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes, Angew. Chem. Int. Ed. 59 (2020) 10732–10745. doi: 10.1002/anie.201912701
    [12]
    Y.V. Mikhaylik, U. S. Pat 7 (2008) 680.
    [13]
    D. Aurbach, E. Pollak, R. Elazari, et al., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries, J. Electrochem. Soc. 156 (2009) A694–A702. doi: 10.1149/1.3148721
    [14]
    S.Z. Xiong, K. Xie, Y. Diao, et al., Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries, Electrochim. Acta 83 (2012) 78–86. doi: 10.1016/j.electacta.2012.07.118
    [15]
    M. Ebadi, M.J. Lacey, D. Brandell, et al., Density functional theory modeling the interfacial chemistry of the LiNO3 additive for lithium-sulfur batteries by means of simulated photoelectron spectroscopy, J. Phys. Chem. C 121 (2017) 23324–23332. doi: 10.1021/acs.jpcc.7b07847
    [16]
    G.Q. Ma, Z.Y. Wen, M.F. Wu, et al., A lithium anode protection guided highlystable lithium-sulfur battery, Chem. Commun. 50 (2014) 14209–14212. doi: 10.1039/C4CC05535G
    [17]
    R. May, K.J. Fritzsching, D. Livitz, et al., Rapid interfacial exchange of Li ions dictates high coulombic efficiency in Li metal anodes, ACS Energy Lett. 6 (2021) 1162–1169.
    [18]
    B.A. Boukamp, R.A. Huggins, Fast ionic conductivity in lithium nitride, Mater. Res. Bull. 13 (1978) 23–32. doi: 10.1016/0025-5408(78)90023-5
    [19]
    B. Wang, B.S. Kwak, B.C. Sales, et al., Ionic conductivities and structure of lithium phosphorus oxynitride glasses, J. Non-Cryst. Solids 183 (1995) 297–306. doi: 10.1016/0022-3093(94)00665-2
    [20]
    A. Jozwiuk, B.B. Berkes, T. Weiss, et al., The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries, Energy Environ. Sci. 9 (2016) 2603–2608. doi: 10.1039/C6EE00789A
    [21]
    Y. Liu, D. Lin, Y. Li, et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nat. Commun. 9 (2018) 3656. doi: 10.1038/s41467-018-06077-5
    [22]
    W. Zhang, Z. Shen, S. Li, et al., Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries, Adv. Funct. Mater. 30 (2020) 2003800. doi: 10.1002/adfm.202003800
    [23]
    S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery, Electrochim. Acta 70 (2012) 344–348. doi: 10.1016/j.electacta.2012.03.081
    [24]
    S.S. Zhang, Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte, J. Electrochem. Soc. 159 (2012) A920–A923. doi: 10.1149/2.002207jes
    [25]
    A. Rosenman, R. Elazari, G. Salitra, et al., The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li–S battery systems, J. Electrochem. Soc. 162 (2015) A470–A473. doi: 10.1149/2.0861503jes
    [26]
    F. Qiu, X. Li, H. Deng, et al., A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li, Adv. Energy Mater. 9 (2019) 1803372. doi: 10.1002/aenm.201803372
    [27]
    S.J. Tan, J. Yue, X.C. Hu, et al., Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 7802–7807. doi: 10.1002/anie.201903466
    [28]
    S.Y. Lang, Z.Z. Shen, X.C. Hu, et al., Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode, Nano Energy 75 (2020) 104967. doi: 10.1016/j.nanoen.2020.104967
    [29]
    S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, et al., Insight into the effect of additives widely used in lithium-sulfur batteries, Chem. Commun. 55 (2019) 13951–13954. doi: 10.1039/C9CC06504K
    [30]
    S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, et al., The protection of lithium metal enabled by LiNO3 for lithium-sulfur batteries, ECS Trans. 97 (2020) 827–834. doi: 10.1149/09707.0827ecst
    [31]
    N. Ding, L. Zhou, C.W. Zhou, et al., Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst, Sci. Rep. 6 (2016) 33154. doi: 10.1038/srep33154
    [32]
    R. Xu, J.C.M. Li, J. Lu, et al., Demonstration of highly efficient lithium-sulfur batteries, J. Mater. Chem. A 3 (2015) 4170–4179. doi: 10.1039/C4TA06641C
    [33]
    S.S. Zhang, J.A. Read, A new direction for the performance improvement of rechargeable lithium/sulfur batteries, J. Power Sources 200 (2012) 77–82. doi: 10.1016/j.jpowsour.2011.10.076
    [34]
    S.S. Zhang, New insight into liquid electrolyte of rechargeable lithium/sulfur battery, Electrochim. Acta 97 (2013) 226–230. doi: 10.1016/j.electacta.2013.02.122
    [35]
    X. Liang, Z.Y. Wen, Y. Liu, et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, J. Power Sources 196 (2011) 9839–9843. doi: 10.1016/j.jpowsour.2011.08.027
    [36]
    L.H. Yu, J.J. Song, L.P. Wang, et al., An investigation on the relationship between the stability of lithium anode and lithium nitrate in electrolyte, J. Electrochem. Soc. 166 (2019) A3570–A3574. doi: 10.1149/2.0151915jes
    [37]
    J. Shim, T.J. Ko, K. Yoo, Study for an effect of LiNO3 on polysulfide multistep reaction in Li/S battery, J. Ind. Eng. Chem. 80 (2019) 283–291. doi: 10.1016/j.jiec.2019.08.006
    [38]
    S.Z. Xiong, K. Xie, Y. Diao, et al., On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries, J. Power Sources 236 (2013) 181–187. doi: 10.1016/j.jpowsour.2013.02.072
    [39]
    S.Z. Xiong, K. Xie, Y. Diao, et al., Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithiumsulfur batteries, J. Power Sources 246 (2014) 840–845. doi: 10.1016/j.jpowsour.2013.08.041
    [40]
    L. Zhang, M. Ling, J. Feng, et al., The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries, Energy Storage Mater. 11 (2018) 24–29. doi: 10.1016/j.ensm.2017.09.001
    [41]
    W.Y. Li, H.B. Yao, K. Yan, et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun. 6 (2015) 7436. doi: 10.1038/ncomms8436
    [42]
    C.Z. Zhao, X.B. Cheng, R. Zhang, et al., Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Mater. 3 (2016) 77–84. doi: 10.1016/j.ensm.2016.01.007
    [43]
    Q. Zhao, Y.Y. Lu, Z.Q. Zhu, et al., Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode, Nano Lett. 15 (2015) 5982–5987. doi: 10.1021/acs.nanolett.5b02116
    [44]
    V. Giordani, W. Walker, V.S. Bryantsev, et al., Synergistic effect of oxygen and LiNO3 on the interfacial stability of lithium metal in a Li/O2 battery, J. Electrochem. Soc. 160 (2013) A1544–A1550. doi: 10.1149/2.097309jes
    [45]
    S.S. Zhang, A new finding on the role of LiNO3 in lithium-sulfur battery, J. Power Sources 322 (2016) 99–105. doi: 10.1016/j.jpowsour.2016.05.009
    [46]
    X. Tang, D. Zhou, P. Li, et al., High-performance quasi-solid-state MXene-based LiI batteries, ACS Cent. Sci. 5 (2019) 365–373. doi: 10.1021/acscentsci.8b00921
    [47]
    J. Uddin, V.S. Bryantsev, V. Giordani, et al., Lithium nitrate as regenerable SEI stabilizing agent for rechargeable Li/O2 batteries, J. Phys. Chem. Lett. 4 (2013) 3760–3765. doi: 10.1021/jz402025n
    [48]
    J. Ming, Z. Cao, W. Wahyudi, et al., New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases, ACS Energy Lett. 3 (2018) 335–340. doi: 10.1021/acsenergylett.7b01177
    [49]
    W. Wahyudi, V. Ladelta, L. Tsetseris, et al., Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries, Adv. Funct. Mater. 31 (2021) 2101593. doi: 10.1002/adfm.202101593
    [50]
    J.L. Fu, X. Ji, J. Chen, et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries, Angew. Chem. Int. Ed. 59 (2020) 22194–22201. doi: 10.1002/anie.202009575
    [51]
    S. Li, S. Fang, H. Dou, et al., RbF as a dendrite-inhibiting additive in lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 20804–20811. doi: 10.1021/acsami.9b03940
    [52]
    F. Ding, W. Xu, G.L. Graff, et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc. 135 (2013) 4450–4456. doi: 10.1021/ja312241y
    [53]
    Y.H. Zhang, J.F. Qian, W. Xu, et al., Dendrite-free lithium deposition with selfaligned nanorod structure, Nano Lett. 14 (2014) 6889–6896. doi: 10.1021/nl5039117
    [54]
    S. Gu, S.W. Zhang, J. Han, et al., Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte, Adv. Funct. Mater. 31 (2021) 2102128. doi: 10.1002/adfm.202102128
    [55]
    W. Jia, C. Fan, L. Wang, et al., Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery, ACS Appl. Mater. Interfaces 8 (2016) 15399–15405. doi: 10.1021/acsami.6b03897
    [56]
    Q. Xu, Y. Yang, H. Shao, Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries, Electrochim. Acta 212 (2016) 758–766. doi: 10.1016/j.electacta.2016.07.080
    [57]
    S.M. Wood, C.H. Pham, R. Rodriguez, et al., K+ reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase, ACS Energy Lett. 1 (2016) 414–419. doi: 10.1021/acsenergylett.6b00259
    [58]
    Y. Shuai, Z. Zhang, K. Chen, et al., Highly stable lithium plating by a multifunctional electrolyte additive in a lithium-sulfurized polyacrylonitrile battery, Chem. Commun. 55 (2019) 2376–2379. doi: 10.1039/C8CC09372E
    [59]
    N.A. Sahalie, A.A. Assegie, W.N. Su, et al., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources 437 (2019) 226912. doi: 10.1016/j.jpowsour.2019.226912
    [60]
    T.A. Pham, K.E. Kweon, A. Samanta, et al., Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations, J. Phys. Chem. C 121 (2017) 21913–21920. doi: 10.1021/acs.jpcc.7b06457
    [61]
    M. Okoshi, Y. Yamada, A. Yamada, et al., Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents, J. Electrochem. Soc. 160 (2013) A2160–A2165. doi: 10.1149/2.074311jes
    [62]
    R. Zhao, X. Li, Y. Si, et al., Tuning solvation behavior of ester-based electrolytes toward highly stable lithium-metal batteries, ACS Appl. Mater. Interfaces 13 (2021) 40582–40589. doi: 10.1021/acsami.1c10279
    [63]
    C. Yan, Y.X. Yao, X. Chen, et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 57 (2018) 14055–14059. doi: 10.1002/anie.201807034
    [64]
    S.H. Lee, J.Y. Hwang, J. Ming, et al., Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry, Adv. Energy Mater. 10 (2020) 2000567. doi: 10.1002/aenm.202000567
    [65]
    J.K.S. Goodman, P.A. Kohl, Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites, J. Electrochem. Soc. 161 (2014) D418–D424. doi: 10.1149/2.0301409jes
    [66]
    C. Zu, A. Manthiram, Stabilized lithium–metal surface in a polysulfide-rich environment of lithium–sulfur batteries, J. Phys. Chem. Lett. 5 (2014) 2522–2527. doi: 10.1021/jz501352e
    [67]
    S. Yoon, J. Lee, S.O. Kim, et al., Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte, Electrochim. Acta 53 (2008) 2501–2506. doi: 10.1016/j.electacta.2007.10.019
    [68]
    L.N. Wu, J. Peng, F.M. Han, et al., Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition, J. Mater. Chem. 8 (2020) 4300–4307. doi: 10.1039/C9TA13644D
    [69]
    T. Liu, H.J. Li, J.M. Yue, et al., Ultralight electrolyte for high-energy lithium-sulfur pouch cells, Angew. Chem. Int. Ed. 60 (2021) 17547–17555. doi: 10.1002/anie.202103303
    [70]
    W. Walker, V. Giordani, J. Uddin, et al., A rechargeable Li-O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte, J. Am. Chem. Soc. 135 (2013) 2076–2079. doi: 10.1021/ja311518s
    [71]
    Y. Hayashi, S. Yamada, T. Ishikawa, et al., Enhancement of bifunctional effect for LiNO3/glyme electrolyte by using dual solvent system for Li-O2 batteries, J. Electrochem. Soc. 167 (2020), 020542. doi: 10.1149/1945-7111/ab6975
    [72]
    C.M. Burke, V. Pande, A. Khetan, et al., Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 9293–9298. doi: 10.1073/pnas.1505728112
    [73]
    V. Giordani, D. Tozier, J. Uddin, et al., Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox, Nat. Chem. 11 (2019) 1133–1138. doi: 10.1038/s41557-019-0342-6
    [74]
    L. Carbone, D. Di Lecce, M. Gobet, et al., Relevant features of a triethylene glycol dimethyl ether-based electrolyte for application in lithium battery, ACS Appl. Mater. Interfaces 9 (2017) 17086–17096.
    [75]
    H. Jin, H.Y. Liu, H. Cheng, et al., The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode, J. Electroanal. Chem. 874 (2020) 114484. doi: 10.1016/j.jelechem.2020.114484
    [76]
    S.Y. Wei, S. Inoue, D. Di Lecce, et al., Towards a high-performance lithium-metal battery with glyme solution and an olivine cathode, Chemelectrochem 7 (2020) 2376–2388. doi: 10.1002/celc.202000272
    [77]
    Q. Zhao, X.T. Liu, J.X. Zheng, et al., Designing electrolytes with polymerlike glassforming properties and fast ion transport at low temperatures, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 26053–26060. doi: 10.1073/pnas.2004576117
    [78]
    L. Zheng, F. Guo, T. Kang, et al., Stable lithium-carbon composite enabled by dualsalt additives, Nano-Micro Lett. 13 (2021) 111. doi: 10.1007/s40820-021-00633-3
    [79]
    T.L. Zheng, J.W. Xiong, X.T. Shi, et al., Cocktail therapy towards high temperature/high voltage lithium metal battery via solvation sheath structure tuning, Energy Storage Mater. 38 (2021) 599–608. doi: 10.1016/j.ensm.2021.04.002
    [80]
    R. Rodriguez, R.A. Edison, R.M. Stephens, et al., Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition, J. Mater. Chem. 8 (2020) 3999–4006. doi: 10.1039/C9TA10929C
    [81]
    D.W. Kang, J. Moon, H.Y. Choi, et al., Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a highconcentration dual-salt electrolyte with high LiNO3 content, J. Power Sources 490 (2021) 229504. doi: 10.1016/j.jpowsour.2021.229504
    [82]
    V. Etacheri, U. Geiger, Y. Gofer, et al., Exceptional electrochemical performance of Si-nanowires in 1, 3-dioxolane solutions: a surface chemical investigation, Langmuir 28 (2012) 6175–6184. doi: 10.1021/la300306v
    [83]
    P. Dong, X. Zhang, Y. Cha, et al., In situ surface protection of lithium metal anode in Lithium–Selenium disulfide batteries with ionic liquid-based electrolytes, Nano Energy 69 (2020) 104434. doi: 10.1016/j.nanoen.2019.104434
    [84]
    J. Lian, W. Guo, Y. Fu, Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries, J. Am. Chem. Soc. 143 (2021) 11063–11071. doi: 10.1021/jacs.1c04222
    [85]
    D.Y. Wang, Y. Si, W. Guo, et al., Electrosynthesis of 1, 4-bis(diphenylphosphanyl) tetrasulfide via sulfur radical addition as cathode material for rechargeable lithium battery, Nat. Commun. 12 (2021) 3220. doi: 10.1038/s41467-021-23521-1
    [86]
    Z. Wang, X. Li, W. Guo, et al., Anion intercalation of VS4 triggers atomic sulfur transfer to organic disulfide in rechargeable lithium battery, Adv. Funct. Mater. 31 (2021) 2009875. doi: 10.1002/adfm.202009875
    [87]
    H. Liu, W.H. Lai, Q. Yang, et al., Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na–S batteries, Nano-Micro Lett. 13 (2021) 121. doi: 10.1007/s40820-021-00648-w
    [88]
    H. Lin, K.H. Chen, Y. Shuai, et al., Influence of CsNO3 as electrolyte additive on electrochemical property of lithium anode in rechargeable battery, J. Cent. South Univ. 25 (2018) 719–728. doi: 10.1007/s11771-018-3776-x
    [89]
    H. Wang, C.L. Wang, E. Matios, et al., Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate, Angew. Chem. Int. Ed. 57 (2018) 7734–7737. doi: 10.1002/anie.201801818
    [90]
    J.L. Gu, C. Shen, Z. Fang, et al., Toward high-performance Li metal anode via difunctional protecting layer, Front. Chem. 7 (2019) 572. doi: 10.3389/fchem.2019.00572
    [91]
    S. Liu, G.R. Li, X.P. Gao, Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery, ACS Appl. Mater. Interfaces 8 (2016) 7783–7789. doi: 10.1021/acsami.5b12231
    [92]
    J. Li, L. Zhang, F.R. Qin, et al., ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium - sulfur batteries, J. Power Sources 442 (2019) 227232. doi: 10.1016/j.jpowsour.2019.227232
    [93]
    W. Linert, R.F. Jameson, A. Taha, Donor numbers of anions in solution: the use of solvatochromic Lewis acid–base indicators, J. Chem. Soc., Dalton Trans. (1993) 3181–3186.
    [94]
    J. Guo, Z. Wen, M. Wu, et al., Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode, Electrochem. Commun. 51 (2015) 59–63. doi: 10.1016/j.elecom.2014.12.008
    [95]
    Y. Zhang, Y. Zhong, S. Liang, et al., formation and evolution of lithium metal anodecarbonate electrolyte interphases, ACS Materials Lett. 1 (2019) 254–259. doi: 10.1021/acsmaterialslett.9b00167
    [96]
    Z.L. Brown, S. Heiskanen, B.L. Lucht, Using triethyl phosphate to increase the solubility of LiNO3 in carbonate electrolytes for improving the performance of the lithium metal anode, J. Electrochem. Soc. 166 (2019) A2523–A2527. doi: 10.1149/2.0991912jes
    [97]
    D. Xiao, Q. Li, D. Luo, et al., Regulating the Li+-Solvation structure of ester electrolyte for high-energy-density lithium metal batteries, Small 16 (2020) 2004688. doi: 10.1002/smll.202004688
    [98]
    S. Zhang, G. Yang, Z. Liu, et al., Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte, Nano Lett. 21 (2021) 3310–3317. doi: 10.1021/acs.nanolett.1c00848
    [99]
    Y. Jie, X. Liu, Z. Lei, et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte, Angew. Chem. Int. Ed. 59 (2020) 3505–3510. doi: 10.1002/anie.201914250
    [100]
    A. Ramasubramanian, V. Yurkiv, T. Foroozan, et al., Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries, J. Phys. Chem. C 123 (2019) 10237–10245. doi: 10.1021/acs.jpcc.9b00436
    [101]
    N. Piao, S. Liu, B. Zhang, et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes, ACS Energy Lett. 6 (2021) 1839–1848. doi: 10.1021/acsenergylett.1c00365
    [102]
    S. Li, W. Zhang, Q. Wu, et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries, Angew. Chem. Int. Ed. 59 (2020) 14935–14941. doi: 10.1002/anie.202004853
    [103]
    H. Yang, X. Chen, N. Yao, et al., Dissolution–precipitation dynamics in ester electrolyte for high-stability lithium metal batteries, ACS Energy Lett. 6 (2021) 1413–1421.
    [104]
    Y. Guan, A. Wang, S. Liu, et al., Protecting lithium anode with LiNO3/Al2O3/ PVDF-coated separator for lithium-sulfur batteries, J. Alloys Compd. 765 (2018) 544–550. doi: 10.1016/j.jallcom.2018.06.235
    [105]
    Y. Liu, X. Qin, D. Zhou, et al., A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3- in carbonate electrolyte, Energy Storage Mater. 24 (2020) 229–236. doi: 10.1016/j.ensm.2019.08.016
    [106]
    Q. Shi, Y. Zhong, M. Wu, et al., High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 5676. doi: 10.1073/pnas.1803634115
    [107]
    X.Q. Zhang, T. Li, B.Q. Li, et al., A sustainable solid electrolyte interphase for highenergy-density lithium metal batteries under practical conditions, Angew. Chem. Int. Ed. 59 (2020) 3252–3257. doi: 10.1002/anie.201911724
    [108]
    Q. Liu, Y. Xu, J. Wang, et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries, Nano-Micro Lett. 12 (2020) 176. doi: 10.1007/s40820-020-00514-1
    [109]
    D. Jin, Y. Roh, T. Jo, et al., Robust cycling of ultrathin Li metal enabled by nitratepreplanted Li powder composite, Adv. Energy Mater. 11 (2021) 2003769. doi: 10.1002/aenm.202003769
    [110]
    L. Fu, X. Wang, L. Wang, et al., A salt-in-metal anode: stabilizing the solid electrolyte interphase to enable prolonged battery cycling, Adv. Funct. Mater. 31 (2021) 2010602. doi: 10.1002/adfm.202010602
    [111]
    X. Wang, L. Fu, R. Zhan, et al., Addressing the low solubility of a solid electrolyte interphase stabilizer in an electrolyte by composite battery anode design, ACS Appl. Mater. Interfaces 13 (2021) 13354–13361. doi: 10.1021/acsami.1c01571
    [112]
    Y. Nagata, K. Nagao, M. Deguchi, et al., Amorphization of sodium cobalt oxide active materials for high-capacity all-solid-state sodium batteries, Chem. Mater. 30 (2018) 6998–7004. doi: 10.1021/acs.chemmater.8b01872
    [113]
    X. Wang, H. Wang, M. Liu, et al., In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/adsorption mechanism, Small 16 (2020) 2000769. doi: 10.1002/smll.202000769
    [114]
    W. Qi, L. Ben, H. Yu, et al., Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer, J. Power Sources 424 (2019) 150–157. doi: 10.1016/j.jpowsour.2019.03.077
    [115]
    N. Togasaki, T. Momma, T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery, J. Power Sources 307 (2016) 98–104. doi: 10.1016/j.jpowsour.2015.12.123
    [116]
    N. Togasaki, T. Gobara, T. Momma, et al., A comparative study of LiNO3 and LiTFSI for the cycling performance of sigma-MnO2 cathode in lithium- oxygen batteries, J. Electrochem. Soc. 164 (2017) A2225–A2230. doi: 10.1149/2.0051712jes
    [117]
    L.N. Wang, J.Y. Liu, S.Y. Yuan, et al., To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes, Energy Environ. Sci. 9 (2016) 224–231. doi: 10.1039/C5EE02837J
    [118]
    Z.J. Wang, K. Yang, Y.L. Song, et al., Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries, Nano Res. 13 (2020) 2431–2437. doi: 10.1007/s12274-020-2871-0
    [119]
    L.S. Li, Y.F. Deng, H.H. Duan, et al., LiF and LiNO3 as synergistic additives for PEOPVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability, J. Energy Chem. 65 (2022) 319–328. doi: 10.1016/j.jechem.2021.05.055
    [120]
    Z. Zhang, J.L. Wang, S.L. Zhang, et al., Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition, Energy Storage Mater. 43 (2021) 229–237. doi: 10.1016/j.ensm.2021.09.002
    [121]
    Q. Zhao, P.Y. Chen, S.K. Li, et al., Solid-state polymer electrolytes stabilized by task-specific salt additives, J. Mater. Chem. A 7 (2019) 7823–7830. doi: 10.1039/C8TA12008K
    [122]
    G.Y. Zheng, Y. Yang, J.J. Cha, et al., Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett. 11 (2011) 4462–4467. doi: 10.1021/nl2027684
    [123]
    S.S. Zhang, Improved cyclability of liquid electrolyte lithium/sulfur batteries by optimizing electrolyte/sulfur ratio, Energies 5 (2012) 5190–5197. doi: 10.3390/en5125190
    [124]
    Y. Yang, G.Y. Zheng, Y. Cui, A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage, Energy Environ. Sci. 6 (2013) 1552–1558. doi: 10.1039/c3ee00072a
    [125]
    B.D. Adams, E.V. Carino, J.G. Connell, et al., Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes, Nano Energy 40 (2017) 607–617. doi: 10.1016/j.nanoen.2017.09.015
    [126]
    L. Carbone, T. Coneglian, M. Gobet, et al., A simple approach for making a viable, safe, and high-performances lithium-sulfur battery, J. Power Sources 377 (2018) 26–35. doi: 10.1016/j.jpowsour.2017.11.079
    [127]
    Y. Shuai, D.D. Wang, K.H. Chen, et al., Highly stable performance of lithiumsulfurized polyacrylonitrile batteries using a lean ether-based electrolyte, Chem. Commun. 55 (2019) 11271–11274. doi: 10.1039/C9CC05539H
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (733) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return