Citation: | Peng Mengke, Wang Li, Li Longbin, Peng Zhongyou, Tang Xiannong, Hu Ting, Yuan Kai, Chen Yiwang. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors[J]. eScience, 2021, 1(1): 83-90. doi: 10.1016/j.esci.2021.09.004 |
![]() |
![]() |
[1] |
M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652657
|
[2] |
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 1929
|
[3] |
Z.G. Yang, J.L. Zhang, M.C.W. KintnerMeyer, X.C. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111 (2011) 35773613
|
[4] |
X.L. Chen, R. Paul, L.M. Dai, Carbonbased supercapacitors for efficient energy storage, Natl. Sci. Rev. 4 (2017) 453489
|
[5] |
Q.S. Wang, H. Yang, T. Meng, J.D. Yang, B.B. Huang, F.L. Gu, S.Q. Zhang, C.G. Meng, Y.X. Tong, Boosting electron transfer with heterointerface effect for highperformance lithiumion storage, Energy Storage Mater. 36 (2021) 365375
|
[6] |
Q.S. Wang, T. Meng, Y.H. Li, J.D. Yang, B.B. Huang, S.Q. Ou, C.G. Meng, S.Q. Zhang, Y.X. Tong, Consecutive chemical bonds reconstructing surface structure of silicon anode for highperformance lithiumion battery, Energy Storage Mater. 39 (2021) 364364
|
[7] |
T. Meng, B. Li, Q.S. Wang, et al, Largescale electricfield confined silicon with optimized chargetransfer kinetics and structural stability for high-rate lithium-ion batteries, ACS Nano 14 (2020) 70667076
|
[8] |
F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (2014) 22192283
|
[9] |
M.H. Yu, Y.Z. Lu, H.B. Zheng, X.H. Lu, New insights into the operating voltage of aqueous supercapacitors, Chem. Eur. J. 24 (2018) 36393649
|
[10] |
K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for highvoltage supercapacitors, Energy Environ. Sci. 5 (2012) 58425850
|
[11] |
Q.S. Wang, Y.F. Zhang, H.M. Jiang, X.J. Li, Y. Cheng, C.G. Meng, Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solidstate asymmetric supercapacitor, Chem. Eur. J. 362 (2019) 818829
|
[12] |
L. Smith, B. Dunn, Opening the window for aqueous electrolytes, Science 350 (2015) 918 doi: 10.1126/science.aad5575
|
[13] |
D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li, M. Jaroniec, S.Z. Qiao, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv. 6 (2020) eaba4098 doi: 10.1126/sciadv.aba4098
|
[14] |
X.H. Zeng, J.N. Hao, Z.J. Wang, J.F. Mao, Z.P. Guo, Recent progress and perspectives on aqueous Znbased rechargeable batteries with mild aqueous electrolytes, Energy Storage Mater. 20 (2019) 410437
|
[15] |
Z.X. Liu, Y. Huang, Y. Huang, Q. Yang, X.L. Li, Z.D. Huang, C.Y. Zhi, Voltage issue of aqueous rechargeable metalion batteries, Chem. Soc. Rev. 49 (2020) 180232
|
[16] |
T.T. Liang, R.L. Hou, Q.Y. Dou, H.Z. Zhang, X.B. Yan, The applications of water-in-salt electrolytes in electrochemical energy storage devices, Adv. Funct. Mater. 31 (2021) 2006749 doi: 10.1002/adfm.202006749
|
[17] |
R.H. Fraser, B. Rohan, N. Thomas, A 2.7 V aqueous supercapacitor using a microemulsion electrolyte, Batter. Supercaps. 4 (2021) 11221125
|
[18] |
X.D. Bu, L.J. Su, Q.Y. Dou, S.L. Lei, X.B. Yan, A lowcost "waterinsalt" electrolyte for a 2.3 V highrate carbonbased supercapacitor, J. Mater. Chem. A 7 (2019) 75417547
|
[19] |
L. Droguet, A. Grimaud, O. Fontaine, J.M. Tarascon, Water-in-salt electrolyte (WiSE) for aqueous batteries: a long way to practicality, Adv. Energy Mater. 10 (2020) 2002440 doi: 10.1002/aenm.202002440
|
[20] |
Y.H. Shen, B. Liu, X.R. Liu, J. Liu, J. Ding, C. Zhong, W.B. Hu, Waterinsalt electrolyte for safe and highenergy aqueous battery, Energy Storage Mater. 34 (2021) 461474
|
[21] |
X.Y. Wu, Y.K. Xu, C. Zhang, D.P. Leonard, A. Markir, J. Lu, X.L. Ji, Reverse dualion battery via a ZnCl2 waterinsalt electrolyte, J. Am. Chem. Soc. 141 (2019) 63386344
|
[22] |
J.X. Zheng, G.Y. Tan, P. Shan, T.C. Liu, J.T. Hu, Y.C. Feng, L.Y. Yang, M.J. Zhang, Z.H. Chen, Y. Lin, J. Lu, J.C. Neuefeind, Y. Ren, K. Amine, L.W. Wang, K. Xu, F. Pan, Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes, Chem 4 (2018) 28722882
|
[23] |
S.W. Xu, M.C. Zhang, G.Q. Zhang, et al, Temperaturedependent performance of carbonbased supercapacitors with waterinsalt electrolyte, J. Power Source. 441 (2019) 227220 doi: 10.1016/j.jpowsour.2019.227220
|
[24] |
C.H. Lin, K. Sun, M.Y. Ge, L.M. Housel, A.H. McCarthy, M.N. Vila, C.H. Zhao, X.H. Xiao, W.K. Lee, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, Y.K. ChenWiegart, Systemslevel investigation of aqueous batteries for understanding the benefit of waterinsalt electrolyte by synchrotron nanoimaging, Sci. Adv. 6 (2020) eaay7129 doi: 10.1126/sciadv.aay7129
|
[25] |
L.M. Suo, O. Borodin, T. Gao, et al, Waterinsalt" electrolyte enables highvoltage aqueous lithiumion chemistries, Science 350 (2015) 938943
|
[26] |
L.M. Suo, O. Borodin, W. Sun, X.L. Fan, C.Y. Yang, F. Wang, T. Gao, Z.H. Ma, M. Schroeder, A.V. Cresce, S.M. Russell, M. Armand, A. Angell, K. Xu, C.S. Wang, Advanced highvoltage aqueous lithiumion battery enabled by "waterinbisalt" electrolyte, Angew. Chem. Int. Ed. 55 (2016) 72527257
|
[27] |
Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Hydratemelt electrolytes for highenergydensity aqueous batteries, Nat. Energy 1 (2016) 16129 doi: 10.1038/nenergy.2016.129
|
[28] |
S. Ko, Y. Yamada, K. Miyazaki, T. Shimada, E. Watanabe, Y. Tateyama, T. Kamiya, T. Honda, J. Akikusa, A. Yamada, Lithiumsalt monohydrate melt: a stable electrolyte for aqueous lithiumion batteries, Electrochem. Commun. 104 (2019) 106488 doi: 10.1016/j.elecom.2019.106488
|
[29] |
L. Chen, J.X. Zhang, Q. Li, J. Vatamanu, X. Ji, T.P. Pollard, C.Y. Cui, S. Hou, J. Chen, C.Y. Yang, L. Ma, M.S. Ding, M. Garaga, S. Greenbaum, H.S. Lee, O. Borodin, K. Xu, C.S. Wang, A 63 m superconcentrated aqueous electrolyte for highenergy Liion batteries, ACS Energy Lett. 5 (2020) 968974
|
[30] |
W.S.V. Lee, T. Xiong, G.C. Loh, T.L. Tan, J.M. Xue, Optimizing electrolyte physiochemical properties toward 2.8 V aqueous supercapacitor, ACS Appl. Energy Mater. 1 (2018) 30703076
|
[31] |
L.W. Jiang, L.L. Liu, J.M. Yue, Q.Q. Zhang, A.X. Zhou, O. Borodin, L.M. Suo, H. Li, L.Q. Chen, K. Xu, Y.S. Hu, Highvoltage aqueous Naion battery enabled by inertcationassisted waterinsalt electrolyte, Adv. Mater. 32 (2020) e1904427 doi: 10.1002/adma.201904427
|
[32] |
J. ForeroSaboya, E. HosseiniBabAnari, M.E. Abdelhamid, K. MothPoulsen, P. Johansson, Waterinbisalt electrolyte with record salt concentration and widened electrochemical stability window, J. Phys. Chem. Lett. 10 (2019) 49424946
|
[33] |
Z.D. Huang, A. Chen, F.N. Mo, G.J. Liang, X.L. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, B.B. Dong, C.Y. Zhi, Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors, Adv. Energy Mater. 10 (2020) 2001024 doi: 10.1002/aenm.202001024
|
[34] |
M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels, Y. Cui, Z.N. Bao, Concentrated mixed cation acetate "waterinsalt" solutions as green and lowcost high voltage electrolytes for aqueous batteries, Energy Environ. Sci. 11 (2018) 28762883
|
[35] |
F. Wang, O. Borodin, M.S. Ding, M. Gobet, J. Vatamanu, X.L. Fan, T. Gao, N. Eidson, Y.J. Liang, W. Sun, S. Greenbaum, K. Xu, C.S. Wang, Hybrid aqueous/nonaqueous electrolyte for safe and highenergy Liion batteries, Joule 2 (2018) 927937
|
[36] |
N.N. Chang, T.Y. Li, R. Li, S.N. Wang, Y.B. Yin, H.M. Zhang, X.F. Li, An aqueous hybrid electrolyte for lowtemperature zincbased energy storage devices, Energy Environ. Sci. 13 (2020) 35273535
|
[37] |
Q.Y. Dou, S.L. Lei, D.W. Wang, Q.N. Zhang, D.W. Xiao, H.W. Guo, A.P. Wang, H. Yang, Y.L. Li, S.Q. Shi, X.B. Yan, Safe and highrate supercapacitors based on an "acetonitrile/water in salt" hybrid electrolyte, Energy Environ. Sci. 11 (2018) 32123219
|
[38] |
W.J. Wang, W.J. Deng, X.S. Wang, Y.B. Li, Z.Q. Zhou, Z.X. Hu, M.Q. Xue, R. Li, A hybrid superconcentrated electrolyte enables 2.5 V carbonbased supercapacitors, Chem. Commun. 56 (2020) 79657968
|
[39] |
D.W. Xiao, Q.Y. Dou, L. Zhang, Y.L. Ma, S.Q. Shi, S.L. Lei, H.Y. Yu, X.B. Yan, Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor, Adv. Funct. Mater. 29 (2019) 1904136 doi: 10.1002/adfm.201904136
|
[40] |
H. Zhang, B.S. Qin, J. Han, S. Passerini, Aqueous/nonaqueous hybrid electrolyte for sodiumion batteries, ACS Energy Lett. 3 (2018) 17691770
|
[41] |
Q.Y. Dou, Y.L. Lu, L.J. Su, X. Zhang, S.L. Lei, X.D. Bu, L.Y. Liu, D.W. Xiao, J.T. Chen, S.Q. Shi, X.B. Yan, A sodium perchloratebased hybrid electrolyte with high salttowater molar ratio for safe 2.5 V carbonbased supercapacitor, Energy Storage Mater. 23 (2019) 603609
|
[42] |
H.B. Bi, X.S. Wang, H.L. Liu, Y.L. He, W.J. Wang, W.J. Deng, X.L. Ma, Y.S. Wang, W. Rao, Y.H. Chai, H. Ma, R. Li, J.T. Chen, Y.P. Wang, M.Q. Xue, A universal approach to aqueous energy storage via ultralowcost electrolyte with superconcentrated sugar as hydrogenbondregulated solute, Adv. Mater. 32 (2020) e2000074 doi: 10.1002/adma.202000074
|
[43] |
H. Zhang, X. Liu, H.H. Li, I. Hasa, S. Passerini, Challenges and strategies for highenergy aqueous electrolyte rechargeable batteries, Angew. Chem. Int. Ed. 59 (2020) 221 doi: 10.1002/anie.201911530
|
[44] |
Y. Yamada, J.H. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing saltconcentrated battery electrolytes, Nat. Energy 4 (2019) 269280
|
[45] |
L. Xu, J.P. Yang, B. Xue, et al, Molecular insights for the biological interactions between polyethylene glycol and cells, Biomaterials 147 (2017) 113
|
[46] |
A. Mitha, A.Z. Yazdi, M. Ahmed, P. Chen, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries, ChemElectroChem 5 (2018) 24092418
|
[47] |
J. Xie, Z.J. Liang, Y.C. Lu, Molecular crowding electrolytes for highvoltage aqueous batteries, Nat. Mater. 19 (2020) 10061011
|
[48] |
D.L. Chao, S.Z. Qiao, Toward highvoltage aqueous batteries: super or lowconcentrated electrolyte?, Joule 4 (2020) 18461851
|
[49] |
Q. Zhang, Y.L. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun. 11 (2020) 4463 doi: 10.1038/s41467-020-18284-0
|