Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Peng Mengke, Wang Li, Li Longbin, Peng Zhongyou, Tang Xiannong, Hu Ting, Yuan Kai, Chen Yiwang. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors[J]. eScience, 2021, 1(1): 83-90. doi: 10.1016/j.esci.2021.09.004
Citation: Peng Mengke, Wang Li, Li Longbin, Peng Zhongyou, Tang Xiannong, Hu Ting, Yuan Kai, Chen Yiwang. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors[J]. eScience, 2021, 1(1): 83-90. doi: 10.1016/j.esci.2021.09.004

Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors

doi: 10.1016/j.esci.2021.09.004
More Information
  • Corresponding author: E-mail addresses: kai.yuan@ncu.edu.cn (K. Yuan); E-mail addresses: ywchen@ncu.edu.cn (Y. Chen)
  • Received Date: 2021-07-09
  • Revised Date: 2021-08-27
  • Accepted Date: 2021-09-27
  • Available Online: 2021-09-29
  • The development of low-cost and eco-friendly aqueous electrolytes with a wide voltage window is the key to achieving safe high energy density supercapacitors (SCs). In this work, a molecular crowding electrolyte is prepared by simulating the crowded environment in living cells. Ion transport in the molecular crowding electrolyte can be effectively improved via reducing the molecular weight of the crowding agent, polyethylene glycol (PEG). The results show that PEG with a molecular weight of 200 (PEG200) can significantly improve ionic conductivity while maintaining a wide voltage window. These advantages enable commercial activated carbon-based SCs to work at 2.5 V with high energy density, outstanding rate performance and good stability for more than 10, 000 cycles. On this basis, three series of molecular crowding electrolytes using sodium perchlorate, lithium perchlorate, and sodium trifluoromethanesulfonate as salts are developed, demonstrating the versatility of PEG200 for wide-voltage aqueous electrolytes.
  • loading
  • eScience-2021-1-83-ScienceDirect_files_24Jan2022_10-52-11.898.zip
  • [1]
    M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652657
    [2]
    D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 1929
    [3]
    Z.G. Yang, J.L. Zhang, M.C.W. KintnerMeyer, X.C. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111 (2011) 35773613
    [4]
    X.L. Chen, R. Paul, L.M. Dai, Carbonbased supercapacitors for efficient energy storage, Natl. Sci. Rev. 4 (2017) 453489
    [5]
    Q.S. Wang, H. Yang, T. Meng, J.D. Yang, B.B. Huang, F.L. Gu, S.Q. Zhang, C.G. Meng, Y.X. Tong, Boosting electron transfer with heterointerface effect for highperformance lithiumion storage, Energy Storage Mater. 36 (2021) 365375
    [6]
    Q.S. Wang, T. Meng, Y.H. Li, J.D. Yang, B.B. Huang, S.Q. Ou, C.G. Meng, S.Q. Zhang, Y.X. Tong, Consecutive chemical bonds reconstructing surface structure of silicon anode for highperformance lithiumion battery, Energy Storage Mater. 39 (2021) 364364
    [7]
    T. Meng, B. Li, Q.S. Wang, et al, Largescale electricfield confined silicon with optimized chargetransfer kinetics and structural stability for high-rate lithium-ion batteries, ACS Nano 14 (2020) 70667076
    [8]
    F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (2014) 22192283
    [9]
    M.H. Yu, Y.Z. Lu, H.B. Zheng, X.H. Lu, New insights into the operating voltage of aqueous supercapacitors, Chem. Eur. J. 24 (2018) 36393649
    [10]
    K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for highvoltage supercapacitors, Energy Environ. Sci. 5 (2012) 58425850
    [11]
    Q.S. Wang, Y.F. Zhang, H.M. Jiang, X.J. Li, Y. Cheng, C.G. Meng, Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solidstate asymmetric supercapacitor, Chem. Eur. J. 362 (2019) 818829
    [12]
    L. Smith, B. Dunn, Opening the window for aqueous electrolytes, Science 350 (2015) 918 doi: 10.1126/science.aad5575
    [13]
    D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li, M. Jaroniec, S.Z. Qiao, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv. 6 (2020) eaba4098 doi: 10.1126/sciadv.aba4098
    [14]
    X.H. Zeng, J.N. Hao, Z.J. Wang, J.F. Mao, Z.P. Guo, Recent progress and perspectives on aqueous Znbased rechargeable batteries with mild aqueous electrolytes, Energy Storage Mater. 20 (2019) 410437
    [15]
    Z.X. Liu, Y. Huang, Y. Huang, Q. Yang, X.L. Li, Z.D. Huang, C.Y. Zhi, Voltage issue of aqueous rechargeable metalion batteries, Chem. Soc. Rev. 49 (2020) 180232
    [16]
    T.T. Liang, R.L. Hou, Q.Y. Dou, H.Z. Zhang, X.B. Yan, The applications of water-in-salt electrolytes in electrochemical energy storage devices, Adv. Funct. Mater. 31 (2021) 2006749 doi: 10.1002/adfm.202006749
    [17]
    R.H. Fraser, B. Rohan, N. Thomas, A 2.7 V aqueous supercapacitor using a microemulsion electrolyte, Batter. Supercaps. 4 (2021) 11221125
    [18]
    X.D. Bu, L.J. Su, Q.Y. Dou, S.L. Lei, X.B. Yan, A lowcost "waterinsalt" electrolyte for a 2.3 V highrate carbonbased supercapacitor, J. Mater. Chem. A 7 (2019) 75417547
    [19]
    L. Droguet, A. Grimaud, O. Fontaine, J.M. Tarascon, Water-in-salt electrolyte (WiSE) for aqueous batteries: a long way to practicality, Adv. Energy Mater. 10 (2020) 2002440 doi: 10.1002/aenm.202002440
    [20]
    Y.H. Shen, B. Liu, X.R. Liu, J. Liu, J. Ding, C. Zhong, W.B. Hu, Waterinsalt electrolyte for safe and highenergy aqueous battery, Energy Storage Mater. 34 (2021) 461474
    [21]
    X.Y. Wu, Y.K. Xu, C. Zhang, D.P. Leonard, A. Markir, J. Lu, X.L. Ji, Reverse dualion battery via a ZnCl2 waterinsalt electrolyte, J. Am. Chem. Soc. 141 (2019) 63386344
    [22]
    J.X. Zheng, G.Y. Tan, P. Shan, T.C. Liu, J.T. Hu, Y.C. Feng, L.Y. Yang, M.J. Zhang, Z.H. Chen, Y. Lin, J. Lu, J.C. Neuefeind, Y. Ren, K. Amine, L.W. Wang, K. Xu, F. Pan, Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes, Chem 4 (2018) 28722882
    [23]
    S.W. Xu, M.C. Zhang, G.Q. Zhang, et al, Temperaturedependent performance of carbonbased supercapacitors with waterinsalt electrolyte, J. Power Source. 441 (2019) 227220 doi: 10.1016/j.jpowsour.2019.227220
    [24]
    C.H. Lin, K. Sun, M.Y. Ge, L.M. Housel, A.H. McCarthy, M.N. Vila, C.H. Zhao, X.H. Xiao, W.K. Lee, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, Y.K. ChenWiegart, Systemslevel investigation of aqueous batteries for understanding the benefit of waterinsalt electrolyte by synchrotron nanoimaging, Sci. Adv. 6 (2020) eaay7129 doi: 10.1126/sciadv.aay7129
    [25]
    L.M. Suo, O. Borodin, T. Gao, et al, Waterinsalt" electrolyte enables highvoltage aqueous lithiumion chemistries, Science 350 (2015) 938943
    [26]
    L.M. Suo, O. Borodin, W. Sun, X.L. Fan, C.Y. Yang, F. Wang, T. Gao, Z.H. Ma, M. Schroeder, A.V. Cresce, S.M. Russell, M. Armand, A. Angell, K. Xu, C.S. Wang, Advanced highvoltage aqueous lithiumion battery enabled by "waterinbisalt" electrolyte, Angew. Chem. Int. Ed. 55 (2016) 72527257
    [27]
    Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Hydratemelt electrolytes for highenergydensity aqueous batteries, Nat. Energy 1 (2016) 16129 doi: 10.1038/nenergy.2016.129
    [28]
    S. Ko, Y. Yamada, K. Miyazaki, T. Shimada, E. Watanabe, Y. Tateyama, T. Kamiya, T. Honda, J. Akikusa, A. Yamada, Lithiumsalt monohydrate melt: a stable electrolyte for aqueous lithiumion batteries, Electrochem. Commun. 104 (2019) 106488 doi: 10.1016/j.elecom.2019.106488
    [29]
    L. Chen, J.X. Zhang, Q. Li, J. Vatamanu, X. Ji, T.P. Pollard, C.Y. Cui, S. Hou, J. Chen, C.Y. Yang, L. Ma, M.S. Ding, M. Garaga, S. Greenbaum, H.S. Lee, O. Borodin, K. Xu, C.S. Wang, A 63 m superconcentrated aqueous electrolyte for highenergy Liion batteries, ACS Energy Lett. 5 (2020) 968974
    [30]
    W.S.V. Lee, T. Xiong, G.C. Loh, T.L. Tan, J.M. Xue, Optimizing electrolyte physiochemical properties toward 2.8 V aqueous supercapacitor, ACS Appl. Energy Mater. 1 (2018) 30703076
    [31]
    L.W. Jiang, L.L. Liu, J.M. Yue, Q.Q. Zhang, A.X. Zhou, O. Borodin, L.M. Suo, H. Li, L.Q. Chen, K. Xu, Y.S. Hu, Highvoltage aqueous Naion battery enabled by inertcationassisted waterinsalt electrolyte, Adv. Mater. 32 (2020) e1904427 doi: 10.1002/adma.201904427
    [32]
    J. ForeroSaboya, E. HosseiniBabAnari, M.E. Abdelhamid, K. MothPoulsen, P. Johansson, Waterinbisalt electrolyte with record salt concentration and widened electrochemical stability window, J. Phys. Chem. Lett. 10 (2019) 49424946
    [33]
    Z.D. Huang, A. Chen, F.N. Mo, G.J. Liang, X.L. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, B.B. Dong, C.Y. Zhi, Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors, Adv. Energy Mater. 10 (2020) 2001024 doi: 10.1002/aenm.202001024
    [34]
    M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels, Y. Cui, Z.N. Bao, Concentrated mixed cation acetate "waterinsalt" solutions as green and lowcost high voltage electrolytes for aqueous batteries, Energy Environ. Sci. 11 (2018) 28762883
    [35]
    F. Wang, O. Borodin, M.S. Ding, M. Gobet, J. Vatamanu, X.L. Fan, T. Gao, N. Eidson, Y.J. Liang, W. Sun, S. Greenbaum, K. Xu, C.S. Wang, Hybrid aqueous/nonaqueous electrolyte for safe and highenergy Liion batteries, Joule 2 (2018) 927937
    [36]
    N.N. Chang, T.Y. Li, R. Li, S.N. Wang, Y.B. Yin, H.M. Zhang, X.F. Li, An aqueous hybrid electrolyte for lowtemperature zincbased energy storage devices, Energy Environ. Sci. 13 (2020) 35273535
    [37]
    Q.Y. Dou, S.L. Lei, D.W. Wang, Q.N. Zhang, D.W. Xiao, H.W. Guo, A.P. Wang, H. Yang, Y.L. Li, S.Q. Shi, X.B. Yan, Safe and highrate supercapacitors based on an "acetonitrile/water in salt" hybrid electrolyte, Energy Environ. Sci. 11 (2018) 32123219
    [38]
    W.J. Wang, W.J. Deng, X.S. Wang, Y.B. Li, Z.Q. Zhou, Z.X. Hu, M.Q. Xue, R. Li, A hybrid superconcentrated electrolyte enables 2.5 V carbonbased supercapacitors, Chem. Commun. 56 (2020) 79657968
    [39]
    D.W. Xiao, Q.Y. Dou, L. Zhang, Y.L. Ma, S.Q. Shi, S.L. Lei, H.Y. Yu, X.B. Yan, Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor, Adv. Funct. Mater. 29 (2019) 1904136 doi: 10.1002/adfm.201904136
    [40]
    H. Zhang, B.S. Qin, J. Han, S. Passerini, Aqueous/nonaqueous hybrid electrolyte for sodiumion batteries, ACS Energy Lett. 3 (2018) 17691770
    [41]
    Q.Y. Dou, Y.L. Lu, L.J. Su, X. Zhang, S.L. Lei, X.D. Bu, L.Y. Liu, D.W. Xiao, J.T. Chen, S.Q. Shi, X.B. Yan, A sodium perchloratebased hybrid electrolyte with high salttowater molar ratio for safe 2.5 V carbonbased supercapacitor, Energy Storage Mater. 23 (2019) 603609
    [42]
    H.B. Bi, X.S. Wang, H.L. Liu, Y.L. He, W.J. Wang, W.J. Deng, X.L. Ma, Y.S. Wang, W. Rao, Y.H. Chai, H. Ma, R. Li, J.T. Chen, Y.P. Wang, M.Q. Xue, A universal approach to aqueous energy storage via ultralowcost electrolyte with superconcentrated sugar as hydrogenbondregulated solute, Adv. Mater. 32 (2020) e2000074 doi: 10.1002/adma.202000074
    [43]
    H. Zhang, X. Liu, H.H. Li, I. Hasa, S. Passerini, Challenges and strategies for highenergy aqueous electrolyte rechargeable batteries, Angew. Chem. Int. Ed. 59 (2020) 221 doi: 10.1002/anie.201911530
    [44]
    Y. Yamada, J.H. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing saltconcentrated battery electrolytes, Nat. Energy 4 (2019) 269280
    [45]
    L. Xu, J.P. Yang, B. Xue, et al, Molecular insights for the biological interactions between polyethylene glycol and cells, Biomaterials 147 (2017) 113
    [46]
    A. Mitha, A.Z. Yazdi, M. Ahmed, P. Chen, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries, ChemElectroChem 5 (2018) 24092418
    [47]
    J. Xie, Z.J. Liang, Y.C. Lu, Molecular crowding electrolytes for highvoltage aqueous batteries, Nat. Mater. 19 (2020) 10061011
    [48]
    D.L. Chao, S.Z. Qiao, Toward highvoltage aqueous batteries: super or lowconcentrated electrolyte?, Joule 4 (2020) 18461851
    [49]
    Q. Zhang, Y.L. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun. 11 (2020) 4463 doi: 10.1038/s41467-020-18284-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (363) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return