Citation: | Miao Yanfeng, Wang Xingtao, Zhang Haijuan, Zhang Taiyang, Wei Ning, Liu Xiaomin, Chen Yuetian, Chen Jie, Zhao Yixin. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics[J]. eScience, 2021, 1(1): 91-97. doi: 10.1016/j.esci.2021.09.005 |
![]() |
![]() |
[1] |
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051 doi: 10.1021/ja809598r
|
[2] |
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 (2013) 316-319 doi: 10.1038/nature12340
|
[3] |
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395-398 doi: 10.1038/nature12509
|
[4] |
H. Min, M. Kim, S. -U. Lee, H. Kim, G. Kim, K. Choi, J.H. Lee, S.I. Seok, Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide, Science 366 (2019) 749-753 doi: 10.1126/science.aay7044
|
[5] |
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies > 18%, Science 365 (2019) 591-595 doi: 10.1126/science.aav8680
|
[6] |
Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability, Acc. Chem. Res. 49 (2016) 286-293 doi: 10.1021/acs.accounts.5b00420
|
[7] |
D. Wei, F. Ma, R. Wang, S. Dou, P. Cui, H. Huang, J. Ji, E. Jia, X. Jia, S. Sajid, Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells, Adv. Mater. 30 (2018) e1707583 doi: 10.1002/adma.201707583
|
[8] |
Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, J. Huang, Suppressed ion migration in low-dimensional perovskites, ACS Energy Lett 2 (2017) 1571-1572 doi: 10.1021/acsenergylett.7b00442
|
[9] |
S. Tan, I. Yavuz, N. De Marco, T. Huang, S.J. Lee, C.S. Choi, M. Wang, S. Nuryyeva, R. Wang, Y. Zhao, Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells, Adv. Mater. 32 (2020) e1906995 doi: 10.1002/adma.201906995
|
[10] |
T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang, X. Meng, E. Bi, X. Yang, L. Han, Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups, Adv. Mater. 31 (2019) e1900605
|
[11] |
M.I. Saidaminov, O.F. Mohammed, O.M. Bakr, Low-dimensional-networked metal halide perovskites: the next big thing, ACS Energy Lett. 2 (2017) 889-896 doi: 10.1021/acsenergylett.6b00705
|
[12] |
H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature 536 (2016) 312-316 doi: 10.1038/nature18306
|
[13] |
D.H. Cao, C.C. Stoumpos, O.K. Farha, J. T Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications, J. Am. Chem. Soc. 137 (2015) 7843-7850 doi: 10.1021/jacs.5b03796
|
[14] |
B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: structural versatility for functional materials design, Chem. Rev. 116 (2016) 4558-4596 doi: 10.1021/acs.chemrev.5b00715
|
[15] |
R. Quintero-Bermudez, A. Gold-Parker, A.H. Proppe, R. Munir, Z. Yang, S.O. Kelley, A. Amassian, M.F. Toney, E.H. Sargent, Compositional and orientational control in metal halide perovskites of reduced dimensionality, Nat. Mater. 17 (2018) 900-907 doi: 10.1038/s41563-018-0154-x
|
[16] |
C. Ma, D. Shen, T.W. Ng, M.F. Lo, C. S Lee, 2D perovskites with short interlayer distance for high-performance solar cell application, Adv. Mater. 30 (2018) e1800710 doi: 10.1002/adma.201800710
|
[17] |
D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji, Y. Liu, Thiophene-based two-dimensional dion-jacobson perovskite solar cells with over 15% efficiency, J. Am. Chem. Soc. 142 (2020) 11114-11122 doi: 10.1021/jacs.0c03363
|
[18] |
C. Ortiz-Cervantes, P.I. Roman-Roman, J. Vazquez-Chavez, M. Hernandez-Rodriguez, D. Solis-Ibarra, Thousand-fold conductivity increase in 2D perovskites by polydiacetylene incorporation and doping, Angew. Chem. Int. Ed. 57 (2018) 13882-13886 doi: 10.1002/anie.201809028
|
[19] |
H. Tsai, R. Asadpour, J.C. Blancon, C.C. Stoumpos, J. Even, P.M. Ajayan, M.G. Kanatzidis, M.A. Alam, A.D. Mohite, W. Nie, Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells, Nat. Commun. 9 (2018) 2130 doi: 10.1038/s41467-018-04430-2
|
[20] |
P. Chen, Y. Bai, S. Wang, M. Lyu, J. -H. Yun, L. In Wang, Situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells, Adv. Funct. Mater. 28 (2018) 1706923 doi: 10.1002/adfm.201706923
|
[21] |
Q. Zhou, L. Liang, J. Hu, B. Cao, L. Yang, T. Wu, X. Li, B. Zhang, P. Gao, High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer, Adv. Energy Mater. 9 (2019) 1802595 doi: 10.1002/aenm.201802595
|
[22] |
J. Hu, C. Wang, S. Qiu, Y. Zhao, E. Gu, L. Zeng, Y. Yang, C. Li, X. Liu, K. Forberich, Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells, Adv. Energy Mater. 10 (2020) 2000173 doi: 10.1002/aenm.202000173
|
[23] |
C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis, Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites, Inorg. Chem. 56 (2017) 56-73 doi: 10.1021/acs.inorgchem.6b02764
|
[24] |
F. Ansari, E. Shirzadi, M. Salavati-Niasari, T. LaGrange, K. Nonomura, J.H. Yum, K. Sivula, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells, J. Am. Chem. Soc. 142 (2020) 11428-11433 doi: 10.1021/jacs.0c01704
|
[25] |
N. Yang, C. Zhu, Y. Chen, H. Zai, C. Wang, X. Wang, H. Wang, S. Ma, Z. Gao, X. Wang, In-situ cross-linked 1D/3D perovskite heterostructure improves stability of hybrid perovskite solar cells for over 3000h operation, Energy Environ. Sci. 13 (2020) 4344-4352 doi: 10.1039/D0EE01736A
|
[26] |
J. Fan, Y. Ma, C. Zhang, C. Liu, W. Li, R.E.I. Schropp, Y. Mai, Thermodynamically self-healing 1D-3D hybrid perovskite solar cells, Adv. Energy Mater. 8 (2018) 1703421 doi: 10.1002/aenm.201703421
|
[27] |
C. Ma, D. Shen, B. Huang, X. Li, W. -C. Chen, M. -F. Lo, P. Wang, M. Hon-Wah Lam, Y. Lu, B. Ma, High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite, J. Mater. Chem. A 7 (2019) 8811-8817 doi: 10.1039/C9TA01859J
|
[28] |
Z. Yuan, C. Zhou, Y. Tian, Y. Shu, J. Messier, J.C. Wang, L.J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, One-dimensional organic lead halide perovskites with efficient bluish white-light emission, Nat. Commun. 8 (2017) 14051 doi: 10.1038/ncomms14051
|
[29] |
S. Yang, Y. Wang, P. Liu, Y. -B. Cheng, H.J. Zhao, H.G. Yang, Functionalization of perovskite thin films with moisture-tolerant molecules, Nat. Energy 1 (2016) 15016 doi: 10.1038/nenergy.2015.16
|
[30] |
N.F. Jamaludin, N. Yantara, Y.F. Ng, M. Li, T.W. Goh, K. Thirumal, T.C. Sum, N. Mathews, C. Soci, S. Mhaisalkar, Grain size modulation and interfacial engineering of CH3NH3PbBr3 emitter films through incorporation of tetraethylammonium bromide, ChemPhysChem 19 (2018) 1075-1080 doi: 10.1002/cphc.201701380
|
[31] |
X. Liu, X. Wang, T. Zhang, Y. Miao, Z. Qin, Y. Chen, Y. Zhao, Organic tetrabutylammonium cation intercalation to heal inorganic CsPbI3 perovskite, Angew. Chem. Int. Ed. 60 (2021) 12351-12355 doi: 10.1002/anie.202102538
|
[32] |
X. Wang, Y. Wang, T. Zhang, X. Liu, Y. Zhao, Steric mixed-cation 2D perovskite as a methylammonium locker to stabilize MAPbI3, Angew. Chem. Int. Ed. 59 (2020) 1469-1473 doi: 10.1002/anie.201911518
|
[33] |
M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization, Nat. Commun. 6 (2015) 7586 doi: 10.1038/ncomms8586
|
[34] |
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3 PbI3single crystals, Science 347 (2015) 967-970 doi: 10.1126/science.aaa5760
|
[35] |
K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, Z. Chen, Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation, Nat. Mater. 17 (2018) 908-914 doi: 10.1038/s41563-018-0164-8
|
[36] |
X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency, Chem. Rev. 121 (2021) 2230-2291 doi: 10.1021/acs.chemrev.0c01006
|
[37] |
A. Krishna, S. Gottis, M.K. Nazeeruddin, F. Sauvage, Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells?, Adv. Funct. Mater. 29 (2019) 1806482 doi: 10.1002/adfm.201806482
|
[38] |
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics 13 (2019) 460-466 doi: 10.1038/s41566-019-0398-2
|
[39] |
Y. Wang, Y. Zhou, T. Zhang, M. -G. Ju, L. Zhang, M. Kan, Y. Li, X.C. Zeng, N.P. Padture, Y. Zhao, Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells, Mater. Horiz. 5 (2018) 868-873 doi: 10.1039/C8MH00511G
|
[40] |
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, XC. Zeng, J. Huang, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, Nat. Energy 2 (2017) 17102 doi: 10.1038/nenergy.2017.102
|
[41] |
A.Z. Chen, M. Shiu, J.H. Ma, M.R. Alpert, D. Zhang, B.J. Foley, D.M. Smilgies, S.H. Lee, J.J. Choi, Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance, Nat. Commun. 9 (2018) 1336 doi: 10.1038/s41467-018-03757-0
|
[42] |
Q. Cui, X. Song, Y. Liu, Z. Xu, H. Ye, Z. Yang, K. Zhao, S. Liu, Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection, Matter 4 (2021) 2490-2507 doi: 10.1016/j.matt.2021.05.018
|
[43] |
A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi, A. Pecchia, M. Auf der Maur, A. Liedl, R. Larciprete, D.V. Kuznetsov, et al, Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells, Nat. Mater. 18 (2019) 1228-1234 doi: 10.1038/s41563-019-0478-1
|
[44] |
J. Qing, X. -K. Liu, M. Li, F. Liu, Z. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, Y. Wang, Aligned and graded type-II ruddlesden-popper perovskite films for efficient solar cells, Adv. Energy Mater. 8 (2018) 1800185 doi: 10.1002/aenm.201800185
|
[45] |
Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J.M. Luther, M.C. Beard, Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal, Nat. Commun. 6 (2015) 7961 doi: 10.1038/ncomms8961
|
[46] |
Y. Yang, M. Yang, DT. Moore, Y. Yan, EM. Miller, K. Zhu, Beard, , C. Matthew, Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films, Nat. Energy 2 (2017) 16207 doi: 10.1038/nenergy.2016.207
|
[47] |
J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, Fast charge separation in a non-fullerene organic solar cell with a small driving force, Nat. Energy 1 (2016) 16089 doi: 10.1038/nenergy.2016.89
|