Citation: | Cao Shuai, Zhang Huacheng, Zhao Yuxin, Zhao Yanli. Pillararene/Calixarene-based systems for battery and supercapacitor applications[J]. eScience, 2021, 1(1): 28-43. doi: 10.1016/j.esci.2021.10.001 |
[1] |
J.M. Lehn, Supramolecular chemistry, Science 260 (1993) 1762-1763. doi: 10.1126/science.8511582
|
[2] |
D.J. Cram, J.M. Cram, Design of complexes between synthetic hosts and organic guests, Acc. Chem. Res. 11 (1978) 8-14. doi: 10.1021/ar50121a002
|
[3] |
C.J. Pedersen, Macrocyclic polyethers: dibenzo-18-crown-6 polyether and dicyclohexyl-18-crown-6 polyether, Org. Synth. 52 (1972) 66. doi: 10.15227/orgsyn.052.0066
|
[4] |
P. Xing, Y. Zhao, Controlling supramolecular chirality in multicomponent self-assembled systems, Acc. Chem. Res. 51 (2018) 2324-2334. doi: 10.1021/acs.accounts.8b00312
|
[5] |
C.D. Jones, H.T.D. Simmons, K.E. Horner, K. Liu, R.L. Thompson, J.W. Steed, Braiding, branching and chiral amplification of nanofibres in supramolecular gels, Nat. Chem. 11 (2019) 375-381. doi: 10.1038/s41557-019-0222-0
|
[6] |
T. Ogoshi, T. Kakuta, T.A. Yamagishi, Applications of pillar[n]arene-based supramolecular assemblies, Angew. Chem. Int. Ed. 58 (2019) 2197-2206. doi: 10.1002/anie.201805884
|
[7] |
K. Wang, J.H. Jordan, K. Velmurugan, et al., Role of functionalized pillararene architectures in supramolecular catalysis, Angew. Chem. Int. Ed. 60 (2020) 9205-9214.
|
[8] |
M. Morimoto, S.M. Bierschenk, K.T. Xia, R.G. Bergman, K.N. Raymond, F.D. Toste, Advances in supramolecular host-mediated reactivity, Nat. Catal. 3 (2020) 969-984. doi: 10.1038/s41929-020-00528-3
|
[9] |
B. Cheng, A.E. Kaifer, Cathodic voltammetric behavior of pillar[5]quinone in nonaqueous media. Symmetry effects on the electron uptake sequence, J. Am. Chem. Soc. 137 (2015) 9788-9791. doi: 10.1021/jacs.5b05546
|
[10] |
J.D. Tovar, Electrochemistry of functional supramolecular systems, J. Am. Chem. Soc. 132 (2010) 9511. doi: 10.1021/ja104428n
|
[11] |
G.A. Evtyugin, D.N. Shurpik, I.I. Stoikov, Electrochemical sensors and biosensors on the pillar[5]arene platform, Russ. Chem. Bull. 69 (2020) 859-874. doi: 10.1007/s11172-020-2843-2
|
[12] |
G. Zhang, B. Hua, A. Dey, M. Ghosh, B.A. Moosa, N.M. Khashab, Intrinsically porous molecular materials (IPMs) for natural gas and benzene derivatives separations, Acc. Chem. Res. 54 (2021) 155-168. doi: 10.1021/acs.accounts.0c00582
|
[13] |
D. Cao, Y. Kou, J. Liang, Z. Chen, L. Wang, H. Meier, A facile and efficient preparation of pillararenes and a pillarquinone, Angew. Chem. Int. Ed. 48 (2009) 9721-9723. doi: 10.1002/anie.200904765
|
[14] |
J.R. Wu, A.U. Mu, B. Li, C.Y. Wang, L. Fang, Y. W Yang, Desymmetrized leaning pillar[6]arene, Angew. Chem. Int. Ed. 57 (2018) 9853-9858. doi: 10.1002/anie.201805980
|
[15] |
D. Cao, H. Meier, Pillar[n]arenes - a novel, highly promising class of macrocyclic host molecules, Asian J. Org. Chem. 3 (2014) 244-262. doi: 10.1002/ajoc.201300224
|
[16] |
N. Song, T. Kakuta, T. a. Yamagishi, Y.W. Yang, T. Ogoshi, Molecular-scale porous materials based on pillar[n]arenes, Chem 4 (2018) 2029-2053. doi: 10.1016/j.chempr.2018.05.015
|
[17] |
Y. Feng, M. Ovalle, J.S.W. Seale, et al., Molecular pumps and motors, J. Am. Chem. Soc. 143 (2021) 5569-5591. doi: 10.1021/jacs.0c13388
|
[18] |
T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto, para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property, J. Am. Chem. Soc. 130 (2008) 5022-5023. doi: 10.1021/ja711260m
|
[19] |
D. Shetty, A. Trabolsi, Making pillar[6]arenes to lean: an art of tuning a supramolecular host, Sci. China Chem. 62 (2018) 289-290.
|
[20] |
T. Ogoshi, T.A. Yamagishi, Y. Nakamoto, Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry, Chem. Rev. 116 (2016) 7937-8002. doi: 10.1021/acs.chemrev.5b00765
|
[21] |
C.L. Deng, S.L. Murkli, L.D. Isaacs, Supramolecular hosts as in vivo sequestration agents for pharmaceuticals and toxins, Chem. Soc. Rev. 49 (2020) 7516-7532. doi: 10.1039/D0CS00454E
|
[22] |
S. Fa, K. Egami, K. Adachi, K. Kato, T. Ogoshi, Sequential chiral induction and regulator-assisted chiral memory of pillar[5]arenes, Angew. Chem. Int. Ed. 59 (2020) 20353-20356. doi: 10.1002/anie.202010050
|
[23] |
H. Zhu, Q. Li, Z. Gao, et al., Pillararene host-guest complexation induced chirality amplification: a new way to detect cryptochiral compounds, Angew. Chem. Int. Ed. 59 (2020) 10868-10872. doi: 10.1002/anie.202001680
|
[24] |
N.L. Strutt, H. Zhang, S.T. Schneebeli, J.F. Stoddart, Functionalizing pillar[n]arenes, Acc. Chem. Res. 47 (2014) 2631-2642. doi: 10.1021/ar500177d
|
[25] |
Y. Zhou, K. Jie, R. Zhao, F. Huang, Supramolecular-macrocycle-based crystalline organic materials, Adv. Mater. 32 (2020) 1904824. doi: 10.1002/adma.201904824
|
[26] |
K. Jie, Y. Zhou, E. Li, F. Huang, Nonporous adaptive crystals of pillararenes, Acc. Chem. Res. 51 (2018) 2064-2072. doi: 10.1021/acs.accounts.8b00255
|
[27] |
T. Kakuta, T.A. Yamagishi, T. Ogoshi, Stimuli-responsive supramolecular assemblies constructed from pillar[n]arenes, Acc. Chem. Res. 51 (2018) 1656-1666. doi: 10.1021/acs.accounts.8b00157
|
[28] |
J. Chen, Y. Wang, C. Wang, R. Long, T. Chen, Y. Yao, Functionalization of inorganic nanomaterials with pillar[n]arenes, Chem. Commun. 55 (2019) 6817-6826. doi: 10.1039/C9CC03165K
|
[29] |
D. Xia, P. Wang, X. Ji, N.M. Khashab, J.L. Sessler, F. Huang, Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host-guest interactions, Chem. Rev. 120 (2020) 6070-6123. doi: 10.1021/acs.chemrev.9b00839
|
[30] |
B. Hua, W. Zhou, Z. Yang, et al., Supramolecular solid-state microlaser constructed from pillar[5]arene-based host-guest complex microcrystals, J. Am. Chem. Soc. 140 (2018) 15651-15654. doi: 10.1021/jacs.8b11156
|
[31] |
K.U. Lao, C. H Yu, A computational study of unique properties of pillar[n]quinones: self-assembly to tubular structures and potential applications as electron acceptors and anion recognizers, J. Comput. Chem. 32 (2011) 2716-2726. doi: 10.1002/jcc.21853
|
[32] |
J. Xie, H. Shi, C. Shen, L. Huan, M. He, M Chen, Heteroatom-bridged pillar[4]quinone: evolutionary active cathode material for lithium-ion battery using density functional theory, J. Chem. Sci. 133 (2021) 2. doi: 10.1007/s12039-020-01863-5
|
[33] |
I.K. Petrushenko, N.I. Tikhonov, K.B. Petrushenko, Hydrogen adsorption on pillar[6]arene: a computational study, Phys. E 130 (2021) 114719. doi: 10.1016/j.physe.2021.114719
|
[34] |
Q. Yao, B. Lu, C. Ji, Y. Cai, M Yin, Supramolecular host-guest system as ratiometric Fe3+ ion sensor based on water-soluble pillar[5]arene, ACS Appl. Mater. Interfaces 9 (2017) 36320-36326. doi: 10.1021/acsami.7b12063
|
[35] |
M. Rashvand Avei, S. Etezadi, B. Captain, A.E. Kaifer, Visualization and quantitation of electronic communication pathways in a series of redox-active pillar[6]arene-based macrocycles, Commun. Chem. 3 (2020) 117. doi: 10.1038/s42004-020-00363-4
|
[36] |
M.R. Avei, A.E. Kaifer, Through-space communication effects on the electrochemical reduction of partially oxidized pillar[5]arenes containing variable numbers of quinone units, J. Org. Chem. 82 (2017) 8590-8597. doi: 10.1021/acs.joc.7b01366
|
[37] |
M. Zhang, Y. Zhang, W. Huang, Q. Zhang, Recent progress in calix[n]quinone (n = 4, 6) and pillar[5]quinone electrodes for secondary rechargeable batteries, Batter. Supercaps. 3 (2020) 476-487. doi: 10.1002/batt.202000038
|
[38] |
L. Huan, J. Xie, Z. Huang, M. Chen, G. Diao, T. Zuo, Computational electrochemistry of pillar[5]quinone cathode material for lithium-ion batteries, Comp. Mater. Sci. 137 (2017) 233-242. doi: 10.1016/j.commatsci.2017.05.045
|
[39] |
L. Huan, J. Xie, M. Chen, G. Diao, R. Zhao, T. Zuo, Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries, J. Mol. Model. 23 (2017) 105. doi: 10.1007/s00894-017-3282-3
|
[40] |
Z. Ran, H. Yang, Z. Li, et al., Pillar[6]arene@AuNPs functionalized N-CQDs@Co3O4 hybrid composite for ultrasensitive electrochemical detection of human epididymis protein 4, ACS Sustain. Chem. Eng. 8 (2020) 10161-10172. doi: 10.1021/acssuschemeng.0c02238
|
[41] |
S. Cao, L. Zhou, C. Liu, H. Zhang, Y. Zhao, Y. Zhao, Pillararene-based self-assemblies for electrochemical biosensors, Biosens. Bioelectron. 181 (2021) 113-164.
|
[42] |
J. Ye, L. Ma, W. Chen, et al., Supramolecule-mediated synthesis of MoS2/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage, J. Mater. Chem. A 3 (2015) 6884-6893. doi: 10.1039/C5TA00006H
|
[43] |
F. Guo, P. Xiao, B. Yan, et al., One-pot synthesis of hydrazide-pillar[5]arene functionalized reduced graphene oxide for supercapacitor electrode, Chem. Eng. J. 391 (2020) 123511. doi: 10.1016/j.cej.2019.123511
|
[44] |
W. Xiong, W. Huang, M. Zhang, P. Hu, H. Cui, Q. Zhang, Pillar[5]quinone-carbon nanocomposites as high-capacity cathodes for sodium-ion batteries, Chem. Mater. 31 (2019) 8069-8075. doi: 10.1021/acs.chemmater.9b02601
|
[45] |
Z. Yu, J. Ye, W. Chen, S. Xu, F. Huang, Fabrication of few-layer molybdenum disulfide/reduced graphene oxide hybrids with enhanced lithium storage performance through a supramolecule-mediated hydrothermal route, Carbon 114 (2017) 125-133. doi: 10.1016/j.carbon.2016.12.002
|
[46] |
J.M. Tarascon, M Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367. doi: 10.1038/35104644
|
[47] |
J.I. Seeman, G. Restrepo, The mutation of the "Nobel Prize in Chemistry" into the "Nobel Prize in Chemistry or Life Sciences": several decades of transparent and opaque evidence of change within the Nobel Prize program, Angew. Chem. Int. Ed. 59 (2020) 2942-2961. doi: 10.1002/anie.201906266
|
[48] |
L. Zhu, G. Ding, L. Xie, et al., Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries, Chem. Mater. 31 (2019) 8582-8612. doi: 10.1021/acs.chemmater.9b03109
|
[49] |
Z. Tie, Z. Niu, Design strategies for high-performance aqueous Zn/organic batteries, Angew. Chem. Int. Ed. 59 (2020) 21293-21303. doi: 10.1002/anie.202008960
|
[50] |
Q. Zhao, W.W. Huang, Z.Q. Luo, et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes, Sci. Adv. 4 (2018) eaao1761. doi: 10.1126/sciadv.aao1761
|
[51] |
D. Xu, M. Liang, S. Qi, et al., The progress and prospect of tunable organic molecules for organic lithium-ion batteries, ACS Nano 15 (2021) 47-80. doi: 10.1021/acsnano.0c05896
|
[52] |
Y. Lu, J Chen, Prospects of organic electrode materials for practical lithium batteries, Nat. Rev. Chem. 4 (2020) 127-142. doi: 10.1038/s41570-020-0160-9
|
[53] |
J.F. Parker, C.N. Chervin, I.R. Pala, et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion, Science 356 (2017) 415-418. doi: 10.1126/science.aak9991
|
[54] |
Z. Li, C. Li, X. Liu, et al., Continuous electrical pumping membrane process for seawater lithium mining, Energy Environ. Sci. 14 (2021) 3152-3159. doi: 10.1039/D1EE00354B
|
[55] |
X. He, S. Kaur, R. Kostecki, Mining lithium from seawater, Joule 4 (2020) 1357-1358. doi: 10.1016/j.joule.2020.06.015
|
[56] |
X. Zhang, X. Li, W. Gao, et al., Calixarene-functionalized porous carbon aerogels for polysulfide capture: cathodes for high performance lithium-sulfur batteries, ChemPlusChem 84 (2019) 1709-1715. doi: 10.1002/cplu.201900554
|
[57] |
P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang, Y. Yao, Opportunities and challenges for organic electrodes in electrochemical energy storage, Chem. Rev. 120 (2020) 6490-6557. doi: 10.1021/acs.chemrev.9b00482
|
[58] |
D.L. Williams, J.J. Byrne, J.S. Driscoll, A high energy density lithium/dichloroisocyanuric acid battery system, J. Electrochem. Soc. 116 (1969) 2. doi: 10.1149/1.2411755
|
[59] |
H. Alto, H. Binder, A. Konhing, G. Sandstede, Investigation into the use of quinone compounds for battery cathodes, Electrochim. Acta 17 (1972) 873-887. doi: 10.1016/0013-4686(72)90010-2
|
[60] |
N. Ravet, C. Michot, M Armand, Novel cathode materials based on organic couples for lithium batteries, Mater. Res. Soc. Symp. Proc. 496 (1998) 263-273.
|
[61] |
P.A. Reddy, C.D. Gutsche, Calixarenes. 32. Reactions of calix[4]quinones, J. Org. Chem. 58 (1993) 3245-3251. doi: 10.1021/jo00064a009
|
[62] |
M. Gomezkaifer, P.A. Reddy, C.D. Gutsche, L. Echegoyen, Electroactive calixarenes. 1. Properties of calixquinones redox and cation-binding, J. Am. Chem. Soc. 116 (1994) 3580-3587. doi: 10.1021/ja00087a051
|
[63] |
W. Huang, S. Zheng, X. Zhang, W. Zhou, W. Xiong, J Chen, Synthesis and application of calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries, Energy Storage Mater. 26 (2020) 465-471. doi: 10.1016/j.ensm.2019.11.020
|
[64] |
A. Ahmad, Q. Meng, S. Melhi, et al., A hierarchically porous hypercrosslinked and novel quinone based stable organic polymer electrode for lithium-ion batteries, Electrochim. Acta 255 (2017) 145-152. doi: 10.1016/j.electacta.2017.09.017
|
[65] |
Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J Chen, All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode, J. Am. Chem. Soc. 136 (2014) 16461-16464. doi: 10.1021/ja507852t
|
[66] |
B. Yan, L. Wang, W. Huang, S. Zheng, P. Hu, Y. Du, High-capacity organic sodium ion batteries using a sustainable C4Q/CMK-3/SWCNT electrode, Inorg. Chem. Front. 6 (2019) 1977-1985.
|
[67] |
C. Yang, X. Zhang, J. Li, J. Ma, L. Xu, J. Yang, S. Liu, S. Fang, Y. Li, X. Sun, et al., Holey graphite: a promising anode material with ultrahigh storage for lithium-ion battery, Electrochim. Acta 346 (2020) 136244. doi: 10.1016/j.electacta.2020.136244
|
[68] |
S. Yang, Y. Song, K. Ngala, P.Y. Zavalij, M. Stanley Whittingham, Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides, J. Power Sources 119121 (2003) 239-246.
|
[69] |
L. Feng, J. Chang, K. Jiang, et al., Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells, Nano Energy 30 (2016) 355-361. doi: 10.1016/j.nanoen.2016.10.023
|
[70] |
M. Yao, H. Senoh, S. i. Yamazaki, Z. Siroma, T. Sakai, K Yasuda, High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries, J. Power Sources 195 (2010) 8336-8340. doi: 10.1016/j.jpowsour.2010.06.069
|
[71] |
W. Huang, Z. Zhu, L. Wang, et al., Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte, Angew. Chem. Int. Ed. 52 (2013) 9162-9166. doi: 10.1002/anie.201302586
|
[72] |
T. Hirohata, N. Shida, H. Uekusa, et al., Pillar[6]quinone: facile synthesis, crystal structures and electrochemical properties, Chem. Commun. 57 (2021) 6360-6363. doi: 10.1039/D1CC02413B
|
[73] |
M. Zhang, W. Zhou, W. Huang, Characterization methods of organic electrode materials, J. Energy Chem. 57 (2021) 291-303. doi: 10.1016/j.jechem.2020.08.054
|
[74] |
Z. Yu, J. Ye, W. Chen, S. Xu, Fabrication of MoS2/reduced graphene oxide hybrid as an earth-abundant hydrogen evolution electrocatalyst, Mater. Lett. 188 (2017) 48-51. doi: 10.1016/j.matlet.2016.10.088
|
[75] |
F. Xiao, Y.C. Wang, Z.P. Wu, G. Chen, F. Yang, S. Zhu, K. Siddharth, Z. Kong, A. Lu, J.C. Li, et al., Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells, Adv. Mater. (2021) 2006292.
|
[76] |
B. Zhang, L. Fan, R.B. Ambre, et al., Advancing proton exchange membrane electrolyzers with molecular catalysts, Joule 4 (2020) 1408-1444. doi: 10.1016/j.joule.2020.06.001
|
[77] |
L. Shen, Z. Sun, Y. Chu, J. Zou, M.A. Deshusses, Novel sulfonated Nafion®-based composite membranes with pillararene as selective artificial proton channels for application in direct methanol fuel cells, Int. J. Hydrogen Energy 40 (2015) 13071-13079. doi: 10.1016/j.ijhydene.2015.07.073
|
[78] |
T. Ogoshi, R. Sueto, K. Yoshikoshi, K. Yasuhara, T.A. Yamagishi, Spherical vesicles formed by co-assembly of cyclic pentagonal pillar[5]quinone with cyclic hexagonal pillar[6]arene, J. Am. Chem. Soc. 138 (2016) 8064-8067. doi: 10.1021/jacs.6b04125
|
[79] |
J. Kiruthika, S. Srividhya, M. Arunachalam, Anion-responsive pseudo[3]rotaxane from a difunctionalized pillar[4]arene[1]quinone and a bis-imidazolium cation, Org. Lett. 22 (2020) 7831-7836. doi: 10.1021/acs.orglett.0c02710
|
[80] |
D. Wu, Z. Xie, Z. Zhou, P. Shen, Z Chen, Designing high-voltage carbonyl-containing polycyclic aromatic hydrocarbon cathode materials for Li-ion batteries guided by Clar's theory, J. Mater. Chem. A 3 (2015) 19137-19143. doi: 10.1039/C5TA05437K
|
[81] |
M. Sola, Forty years of Clar's aromatic π-sextet rule, Front. Chem. 1 (2013) 22.
|
[82] |
Q. Zhao, L. Miao, M. Ma, L. Liu, J Chen, Theoretical study on lithiation mechanism of benzoquinonebased macrocyclic compounds as cathode for lithium-ion batteries, Phys. Chem. Chem. Phys. 21 (2019) 11004-11010. doi: 10.1039/C9CP00403C
|
[83] |
T. Sri Devi Kumari, A.J.J. Jebaraj, T.A. Raj, D. Jeyakumar, T.P. Kumar, A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste, Energy 95 (2016) 483-493. doi: 10.1016/j.energy.2015.11.069
|
[84] |
H. Lei, X. Chen, L. Xue, et al., A solution-processed pillar[5]arene-based small molecule cathode buffer layer for efficient planar perovskite solar cells, Nanoscale 10 (2018) 8088-8098. doi: 10.1039/C8NR00898A
|
[85] |
H. Li, J. Lang, S. Lei, et al., A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials, Adv. Funct. Mater. 28 (2018) 1800757. doi: 10.1002/adfm.201800757
|
[86] |
B. Genorio, K. Pirnat, R. CercKorosec, R. Dominko, M. Gaberscek, Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries, Angew. Chem. Int. Ed. 49 (2010) 7222-7224. doi: 10.1002/anie.201001539
|
[87] |
C. Liao, K. Zeng, H. Wu, et al., Conjugating pillararene dye in dye-sensitized solar cells, Cell Rep. Phys. Sci. 2 (2021) 100326. doi: 10.1016/j.xcrp.2021.100326
|
[88] |
W. Chen, N.D. Pham, H. Wang, B. Jia, X Wen, Spectroscopic insight into efficient and stable hole transfer at the perovskite/spiro-OMeTAD interface with alternative additives, ACS Appl. Mater. Interfaces 13 (2021) 5752-5761. doi: 10.1021/acsami.0c19111
|
[89] |
N. Shibayama, H. Maekawa, Y. Nakamura, Y. Haruyama, M. Niibe, S. Ito, Control of molecular orientation of spiro-OMeTAD on substrates, ACS Appl. Mater. Interfaces 12 (2020) 50187-50191. doi: 10.1021/acsami.0c15509
|
[90] |
A.K. Jena, M. Ikegami, T. Miyasaka, Severe morphological deformation of spiro-OMeTAD in (CH3NH3)PbI3 solar cells at high temperature, ACS Energy Lett. 2 (2017) 1760-1761. doi: 10.1021/acsenergylett.7b00582
|
[91] |
O.P. Bettucci, J. TurrenCruz, S.H. CabreraEspinoza, et al., Dendritic-like molecules built on a pillar[5]arene core as hole transporting materials for perovskite solar cells, Chem. Eur. J. 27 (2021) 8110-8117. doi: 10.1002/chem.202101110
|
[92] |
B.J. Waghmode, R. Soni, K.R. Patil, D.D. Malkhede, Calixarene based nanocomposite materials for high-performance supercapacitor electrode, New J. Chem. 41 (2017) 9752-9761. doi: 10.1039/C7NJ01125C
|
[93] |
M. Hu, X. Pang, Z. Zhou, Recent progress in high-voltage lithium ion batteries, J. Power Sources 237 (2013) 229-242. doi: 10.1016/j.jpowsour.2013.03.024
|
[94] |
J.W. Choi, D Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater. 1 (2016) 16013. doi: 10.1038/natrevmats.2016.13
|
[95] |
S. Gu, S. Wu, L. Cao, M. Li, N. Qin, J. Zhu, Z. Wang, Y. Li, Z. Li, J. Chen, et al., Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries, J. Am. Chem. Soc. 141 (2019) 9623-9628. doi: 10.1021/jacs.9b03467
|
[96] |
K. Zhang, Z. Hu, Z. Tao, J Chen, Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction, Sci. China Mater. 57 (2014) 42-58. doi: 10.1007/s40843-014-0006-0
|
[97] |
Y. Li, L. Liu, Y. Lu, R. Shi, Y. Ma, Z. Yan, K. Zhang, J Chen, High-energy-density quinone-based electrodes with [Al(OTF)]2+ storage mechanism for rechargeable aqueous aluminum batteries, Adv. Funct. Mater. 31 (2021) 2102063. doi: 10.1002/adfm.202102063
|
[98] |
X. Yang, W. Cai, S. Dong, et al., Fluorescent supramolecular polymers based on pillar[5]arene for OLED device fabrication, ACS Macro Lett. 6 (2017) 647-651. doi: 10.1021/acsmacrolett.7b00309
|
[99] |
J. Murray, K. Kim, T. Ogoshi, W. Yao, B.C. Gibb, The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands, Chem. Soc. Rev. 46 (2017) 2479-2496. doi: 10.1039/C7CS00095B
|
[100] |
H.C. Zhang, Z.N. Liu, Y.L. Zhao, Pillararene-based self-assembled amphiphiles, Chem. Soc. Rev. 47 (2018) 5491-5528. doi: 10.1039/C8CS00037A
|
[101] |
X. Hang, W. Yang, S. Wang, H. Han, W. Liao, J. Jia, Calixarene-based {Co26} burr puzzle: an efficient oxygen reduction catalyst, ACS Appl. Nano Mater. 2 (2019) 4232-4237. doi: 10.1021/acsanm.9b00683
|
[102] |
B.J. Waghmode, A.P. Gaikwad, C.V. Rode, S.D. Sathaye, K.R. Patil, D.D. Malkhede, Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis, ACS Sustain. Chem. Eng. 6 (2018) 9649-9660. doi: 10.1021/acssuschemeng.7b04788
|
[103] |
S. Wang, X. Gao, X. Hang, et al., Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction, J. Am. Chem. Soc. 138 (2016) 16236-16239. doi: 10.1021/jacs.6b11218
|
[104] |
V.S. Sharma, A.S. Sharma, A.P. Shah, P.A. Shah, P.S. Shrivastav, M Athar, New class of supramolecular bowl-shaped columnar mesogens derived from thiacalix[4]arene exhibiting gelation and organic light-emitting diodes applications, ACS Omega 4 (2019) 15862-15872. doi: 10.1021/acsomega.9b01776
|
[105] |
Y.X. Ma, B. Gao, J. He, J.F. Ma, Y. Zhao, Hydrogen bonded metal-organic supramolecule functionalized BiVO4 photoanode for enhanced water oxidation efficiency, Chem. Eng. J. 422 (2021) 130092. doi: 10.1016/j.cej.2021.130092
|
[106] |
N. Manfredi, C. Decavoli, C.L. Boldrini, et al., Multibranched calix[4]arene-based sensitizers for efficient photocatalytic hydrogen production, Eur. J. Org. Chem. 2021 (2021) 284-288. doi: 10.1002/ejoc.202001296
|
[107] |
C. Schottle, E. Guan, A. Okrut, et al., Bulky calixarene ligands stabilize supported iridium pair-site catalysts, J. Am. Chem. Soc. 141 (2019) 4010-4015. doi: 10.1021/jacs.8b13013
|
[108] |
N. de Silva, J.M. Ha, A. Solovyov, et al., A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts, Nat. Chem. 2 (2010) 1062-1068. doi: 10.1038/nchem.860
|
[109] |
A. Okrut, R.C. Runnebaum, X. Ouyang, et al., Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst, Nat. Nanotechnol. 9 (2014) 459-465. doi: 10.1038/nnano.2014.72
|
[110] |
S. Guo, Y. Song, Y. He, X.Y. Hu, L Wang, Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly, Angew. Chem. Int. Ed. 57 (2018) 3163-3167. doi: 10.1002/anie.201800175
|
[111] |
M. Hao, G. Sun, M. Zuo, et al., A supramolecular artificial light-harvesting system with two-step sequential energy transfer for photochemical catalysis, Angew. Chem. Int. Ed. 59 (2020) 10095-10100. doi: 10.1002/anie.201912654
|
[112] |
C.L. Sun, H.Q. Peng, L.Y. Niu, et al., Artificial light-harvesting supramolecular polymeric nanoparticles formed by pillar[5]arene-based host-guest interaction, Chem. Commun. 54 (2018) 1117-1120. doi: 10.1039/C7CC09315B
|
[113] |
Y. Sun, F. Guo, T. Zuo, J. Hua, G. Diao, Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of β-carotene and chlorophyll, Nat. Commun. 7 (2016) 12042. doi: 10.1038/ncomms12042
|
[114] |
T. Ogoshi, K. Saito, R. Sueto, et al., Separation of linear and branched alkanes using host-guest complexation of cyclic and branched alkane vapors by crystal state pillar[6]arene, Angew. Chem. Int. Ed. 57 (2018) 1592-1595. doi: 10.1002/anie.201711575
|
[115] |
J.R. Wu, B. Li, Y. W Yang, Separation of bromoalkanes isomers by nonporous adaptive crystals of leaning pillar[6]arene, Angew. Chem. Int. Ed. 59 (2020) 2251-2255. doi: 10.1002/anie.201911965
|
[116] |
K. Jie, M. Liu, Y. Zhou, et al., Near-ideal xylene selectivity in adaptive molecular pillar[n]arene crystals, J. Am. Chem. Soc. 140 (2018) 6921-6930. doi: 10.1021/jacs.8b02621
|