Citation: | Zhu Yan-Fang, Xiao Yao, Dou Shi-Xue, Kang Yong-Mook, Chou Shu-Lei. Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries[J]. eScience, 2021, 1(1): 13-27. doi: 10.1016/j.esci.2021.10.003 |
[1] |
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682. doi: 10.1021/cr500192f
|
[2] |
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529-3614. doi: 10.1039/C6CS00776G
|
[3] |
W.H. Lai, Y.X. Wang, Y. Wang, M. Wu, J.Z. Wang, H.K. Liu, S.L. Chou, J. Chen, S.X. Dou, Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation, Nat. Chem. 11 (2019) 695-701. doi: 10.1038/s41557-019-0298-6
|
[4] |
C. Wang, L. Liu, S. Zhao, Y. Liu, Y. Yang, H. Yu, S. Lee, G.H. Lee, Y.M. Kang, R. Liu, F. Li, J. Chen, Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun. 12 (2021) 2256. doi: 10.1038/s41467-021-22523-3
|
[5] |
X. Xiang, K. Zhang, J. Chen, Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries, Adv. Mater. 27 (2015) 5343-5364. doi: 10.1002/adma.201501527
|
[6] |
Y. Xiao, T. Wang, Y. -F. Zhu, H. -Y. Hu, S. -J. Tan, S. Li, P. -F. Wang, W. Zhang, Y. -B. Niu, E. -H. Wang, Y. -J. Guo, X. Yang, L. Liu, Y. -M. Liu, H. Li, X. -D. Guo, Y. -X. Yin, Y. -G. Guo, Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery, Research 2020 (2020) 1469301.
|
[7] |
C. Li, L. Liu, J. Kang, Y. Xiao, Y. Feng, F. -F. Cao, H. Zhang, Pristine MOF and COF materials for advanced batteries, Energy Storage Mater 31 (2020) 115-134. doi: 10.1016/j.ensm.2020.06.005
|
[8] |
H. -Y. Hu, Y. Xiao, W. Ling, Y. -B. Wu, P. Wang, S. -J. Tan, Y. -S. Xu, Y. -J. Guo, W. -P. Chen, R. -R. Tang, X. -X. Zeng, Y. -X. Yin, X. -W. Wu, A Stable Biomass-Derived Hard Carbon Anode for High-Performance Sodium-Ion Full Battery, Energy Technol 9 (2020) 202000730.
|
[9] |
Z. Hu, Q. Liu, W. Lai, Q. Gu, L. Li, M. Chen, W. Wang, S. -L. Chou, Y. Liu, S. -X. Dou, Manipulating Molecular Structure and Morphology to Invoke High-Performance Sodium Storage of Copper Phosphide, Adv. Energy Mater. 10 (2020) 1903542. doi: 10.1002/aenm.201903542
|
[10] |
W. Wang, Y. Gang, Z. Hu, Z. Yan, W. Li, Y. Li, Q.F. Gu, Z. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries, Nat. Commun. 11 (2020) 980. doi: 10.1038/s41467-020-14444-4
|
[11] |
W. Ling, N. Fu, J. Yue, X.X. Zeng, Q. Ma, Q. Deng, Y. Xiao, L.J. Wan, Y.G. Guo, X.W. Wu, A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries, Adv. Energy Mater. 10 (2020) 1903966. doi: 10.1002/aenm.201903966
|
[12] |
R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y. -S. Hu, J. Maier, Fundamentals, status and promise of sodium-based batteries, Nat. Rev. Mater. (2021), doi: 10.1038/s41578-021-00324-w.
|
[13] |
W. Li, S.L. Chou, J.Z. Wang, J.H. Kim, H.K. Liu, S.X. Dou, Sn4+xP3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability, Adv. Mater. 26 (2014) 4037-4042. doi: 10.1002/adma.201400794
|
[14] |
Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries, Angew. Chem. Int. Ed. 58 (2019) 7020-7024. doi: 10.1002/anie.201902185
|
[15] |
M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy Environ. Sci. 8 (2015) 81-102. doi: 10.1039/C4EE03192J
|
[16] |
W. Zhang, H. Xia, Z. Zhu, Z. Lv, S. Cao, J. Wei, Y. Luo, Y. Xiao, L. Liu, X. Chen, Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to −130℃, CCS Chem 2 (2020) 1245-1255.
|
[17] |
S.J. Tan, J. Yue, X.C. Hu, Z.Z. Shen, W.P. Wang, J.Y. Li, T.T. Zuo, H. Duan, Y. Xiao, Y.X. Yin, R. Wen, Y.G. Guo, Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries, Angew. Chem. Int. Ed. 58 (2019) 7802-7807. doi: 10.1002/anie.201903466
|
[18] |
Y. Zhu, S. Wang, Z. Miao, Y. Liu, S.L. Chou, Novel Non-Carbon Sulfur Hosts Based on Strong Chemisorption for Lithium-Sulfur Batteries, Small 14 (2018) 1801987. doi: 10.1002/smll.201801987
|
[19] |
Y.B. Niu, Y.X. Yin, W.P. Wang, P.F. Wang, W. Ling, Y. Xiao, Y.G. Guo, In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries, CCS Chem. 1 (2019) 589-597.
|
[20] |
Z. Yang, Z. -G. Wu, J. Liu, Y. Liu, S. Gao, J. Wang, Y. Xiao, Y. Zhong, B. Zhong, X. -D. Guo, Platelet-Like CuS Pregnated with Twin Crystal for High Performance Sodium-Ion Storage, J. Mater. Chem. A. 8 (2020) 8049-8057. doi: 10.1039/D0TA00763C
|
[21] |
Y. Xiao, Y.F. Zhu, W. Xiang, Z.G. Wu, Y.C. Li, J. Lai, S. Li, E.H. Wang, Z.G. Yang, C.L. Xu, B.H. Zhong, X. Guo, Deciphering an Abnormal Layered-Tunnel Heterostructure Induced via Chemical Substitution for the Sodium Oxide Cathode, Angew. Chem. Int. Ed. 59 (2020) 1491-1495. doi: 10.1002/anie.201912101
|
[22] |
S. Li, Y. Xiao, Y. -F. Zhu, Y. -C. Li, T. Chen, D. Wang, Y. -H. Liu, H. Liu, Y. Li, C. Li, G. -K. Wang, Y. -X. Liu, Y. Song, Z. -G. Wu, B. -H. Zhong, X. -D. Guo, A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery, Chem. Eng. J. 412 (2021) 128719. doi: 10.1016/j.cej.2021.128719
|
[23] |
Z.G. Yang, Z.G. Wu, W.B. Hua, Y. Xiao, G.K. Wang, Y.X. Liu, C.J. Wu, Y.C. Li, B.H. Zhong, W. Xiang, Y.J. Zhong, X.D. Guo, Hydrangea-Like CuS with Irreversible Amorphization Transition for High-Performance Sodium-Ion Storage, Adv. Sci. 7 (2020) 1903279. doi: 10.1002/advs.201903279
|
[24] |
Z.Y. Gu, J.Z. Guo, X.X. Zhao, X.T. Wang, D. Xie, Z.H. Sun, C.D. Zhao, H.J. Liang, W.H. Li, X.L. Wu, High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, InfoMat (2021), doi: 10.1002/inf2.12184.
|
[25] |
W. Zuo, J. Qiu, X. Liu, F. Ren, H. Liu, H. He, C. Luo, J. Li, G.F. Ortiz, H. Duan, J. Liu, M.S. Wang, Y. Li, R. Fu, Y. Yang, The stability of P2-layered sodium transition metal oxides in ambient atmospheres, Nat. Commun. 11 (2020) 3544. doi: 10.1038/s41467-020-17290-6
|
[26] |
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. D., M. Wagemaker, L. Chen, Y. -S. Hu, Rational design of layered oxide materials for sodium-ion batteries, Science 370 (2020) 708-711.
|
[27] |
Y. Liu, Z. Wu, S. Indris, W. Hua, N.P.M. Casati, A. Tayal, M.S.D. Darma, G. Wang, Y. Liu, C. Wu, Y. Xiao, B. Zhong, X. Guo, The structural origin of enhanced stability of Na3.32Fe2.11Ca0.23(P2O7)2 cathode for Na-ion batteries, Nano Energy 79 (2020) 105417.
|
[28] |
H. Ma, H. Su, K. Amine, X. Liu, S. Jaffer, T. Shang, L. Gu, H. Yu, Triphase electrode performance adjustment for rechargeable ion batteries, Nano Energy 43 (2018) 1-10. doi: 10.1016/j.nanoen.2017.11.006
|
[29] |
L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo, C. Tian, C. -J. Sun, X. -W. Du, D. Nordlund, H.L. Xin, F. Lin, Deciphering the Cathode-Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials, Adv. Energy Mater. 8 (2018) 1801975. doi: 10.1002/aenm.201801975
|
[30] |
S.F. Li, Z.Y. Gu, J.Z. Guo, X.K. Hou, X. Yang, B. Zhao, X.L. Wu, Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries, J. Mater. Sci. Technol. 78 (2021) 176-182. doi: 10.1016/j.jmst.2020.10.047
|
[31] |
Y. Xiao, Y.F. Zhu, H.R. Yao, P.F. Wang, X.D. Zhang, H. Li, X. Yang, L. Gu, Y.C. Li, T. Wang, Y.X. Yin, X.D. Guo, B.H. Zhong, Y.G. Guo, A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery, Adv. Energy Mater. 9 (2019) 1803978. doi: 10.1002/aenm.201803978
|
[32] |
P.F. Wang, M. Weng, Y. Xiao, Z. Hu, Q. Li, M. Li, Y.D. Wang, X. Chen, X. Yang, Y. Wen, Y.X. Yin, X. Yu, Y. Xiao, J. Zheng, L.J. Wan, F. Pan, Y.G. Guo, An Ordered Ni6-Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode, Adv. Mater. 31 (2019) 1903483. doi: 10.1002/adma.201903483
|
[33] |
K. Zhang, D. Kim, Z. Hu, M. Park, G. Noh, Y. Yang, J. Zhang, V. W. -h. Lau, S. -L. Chou, M. Cho, S. -Y. Choi, Y. -M. Kang, Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries, Nat. Commun. 10 (2019) 5203. doi: 10.1038/s41467-018-07646-4
|
[34] |
Y. Xiao, P.F. Wang, Y.X. Yin, Y.F. Zhu, Y.B. Niu, X.D. Zhang, J. Zhang, X. Yu, X.D. Guo, B.H. Zhong, Y.G. Guo, Exposing {010} Active Facets by Multiple-Layer Oriented Stacking Nanosheets for High-Performance Capacitive Sodium-Ion Oxide Cathode, Adv. Mater. 30 (2018) 1803765. doi: 10.1002/adma.201803765
|
[35] |
Y. Shi, Z. Zhang, P. Jiang, A. Gao, K. Li, Q. Zhang, Y. Sun, X. Lu, D. Cao, X. Lu, Unlocking the potential of P3 structure for practical Sodium-ion batteries by fabricating zero strain framework for Na+ intercalation, Energy Storage Mater 37 (2021) 354-362. doi: 10.1016/j.ensm.2021.02.020
|
[36] |
C. Delmas, Sodium and Sodium-Ion Batteries: 50 Years of Research, Adv. Energy Mater. 8 (2018) 1703137. doi: 10.1002/aenm.201703137
|
[37] |
Y. Xiao, N.M. Abbasi, Y.F. Zhu, S. Li, S.J. Tan, W. Ling, L. Peng, T. Yang, L. Wang, X.D. Guo, Y.X. Yin, H. Zhang, Y.G. Guo, Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium-Ion Batteries, Adv. Funct. Mater. 30 (2020) 2001334. doi: 10.1002/adfm.202001334
|
[38] |
P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance, Adv. Energy Mater. 9 (2017) 1701912.
|
[39] |
M.M. Rahman, J. Mao, W.H. Kan, C. -J. Sun, L. Li, Y. Zhang, M. Avdeev, X. -W. Du, F. Lin, An Ordered P2/P3 Composite Layered Oxide Cathode with Long Cycle Life in Sodium-Ion Batteries, ACS Mater. Lett. 1 (2019) 573-581. doi: 10.1021/acsmaterialslett.9b00347
|
[40] |
Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, S.L. Chou, Y. Liu, S.X. Dou, The Cathode Choice for Commercialization of Sodium-Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs, Adv. Funct. Mater. 30 (2020) 1909530. doi: 10.1002/adfm.201909530
|
[41] |
Y. Xiao, P.F. Wang, Y.X. Yin, Y.F. Zhu, X. Yang, X.D. Zhang, Y. Wang, X.D. Guo, B.H. Zhong, Y.G. Guo, A Layered-Tunnel Intergrowth Structure for High-Performance Sodium-Ion Oxide Cathode, Adv. Energy Mater. 8 (2018) 1800492. doi: 10.1002/aenm.201800492
|
[42] |
M.M. Thackeray, Exploiting the Spinel Structure for Li-ion Battery Applications: A Tribute to John B. Goodenough, Adv. Energy Mater. 11 (2020) 2001117.
|
[43] |
M. Ren, H. Fang, C. Wang, H. Li, F. Li, Advances on Manganese-Oxide-Based Cathodes for Na-Ion Batteries, Energy & Fuels 34 (2020) 13412-13426.
|
[44] |
K. Wang, H. Wan, P. Yan, X. Chen, J. Fu, Z. Liu, H. Deng, F. Gao, M. Sui, Dopant Segregation Boosting High-Voltage Cyclability of Layered Cathode for Sodium Ion Batteries, Adv. Mater. 31 (2019) 1904816. doi: 10.1002/adma.201904816
|
[45] |
Y.T. Zhou, X. Sun, B.K. Zou, J.Y. Liao, Z.Y. Wen, C.H. Chen, Cobalt-substituted Na0.44Mn1-xCoxO2: phase evolution and a high capacity positive electrode for sodium-ion batteries, Electrochim. Acta. 213 (2016) 496-503. doi: 10.1016/j.electacta.2016.07.089
|
[46] |
K. Jiang, S. Xu, S. Guo, X. Zhang, X. Zhang, Y. Qiao, T. Fang, P. Wang, P. He, H. Zhou, A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life, Nano Energy 52 (2018) 88-94. doi: 10.1016/j.nanoen.2018.07.042
|
[47] |
S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries, Nat. Commun. 8 (2017) 135. doi: 10.1038/s41467-017-00157-8
|
[48] |
J. Deng, W. -B. Luo, X. Lu, Q. Yao, Z. Wang, H. -K. Liu, H. Zhou, S. -X. Dou, High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode, Adv. Energy Mater. 8 (2017) 1701610.
|
[49] |
W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng, L. Qiao, Z. Zhu, Z. Lv, Y. Zhang, X. Ge, S. Xi, Z. Wang, Y. Du, X. Chen, Lowering Charge Transfer Barrier of LiMn2O4 via Nickel Surface Doping To Enhance Li+ Intercalation Kinetics at Subzero Temperatures, J. Am. Chem. Soc. 141 (2019) 14038-14042. doi: 10.1021/jacs.9b05531
|
[50] |
C. Zhan, T. Wu, J. Lu, K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review, Energy Environ. Sci. 11 (2018) 243-257. doi: 10.1039/C7EE03122J
|
[51] |
Y. Xiao, X.D. Zhang, Y.F. Zhu, P.F. Wang, Y.X. Yin, X. Yang, J.L. Shi, J. Liu, H. Li, X.D. Guo, B.H. Zhong, Y.G. Guo, Suppressing Manganese Dissolution via Exposing Stable {111} Facets for High-Performance Lithium-Ion Oxide Cathode, Adv. Sci. 6 (2019) 1801908.
|
[52] |
J.Y. Piao, X.C. Liu, J. Wu, W. Yang, Z. Wei, J. Ma, S.Y. Duan, X.J. Lin, Y.S. Xu, A.M. Cao, L.J. Wan, Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance, ACS Appl. Mater. Interfaces. 10 (2018) 22896-22901. doi: 10.1021/acsami.8b08528
|
[53] |
L. Ben, H. Yu, B. Chen, Y. Chen, Y. Gong, X. Yang, L. Gu, X. Huang, Unusual Spinel-to-Layered Transformation in LiMn2O4 Cathode Explained by Electrochemical and Thermal Stability Investigation, ACS Appl. Mater. Interfaces. 9 (2017) 35463-35475. doi: 10.1021/acsami.7b11303
|
[54] |
C. Ling, F. Mizuno, Phase Stability of Post-spinel Compound AMn2O4 (A = Li, Na, or Mg) and Its Application as a Rechargeable Battery Cathode, Chem. Mater. 25 (2013) 3062-3071. doi: 10.1021/cm401250c
|
[55] |
X. Liu, X. Wang, A. Iyo, H. Yu, D. Li, H. Zhou, High stable post-spinel NaMn2O4 cathode of sodium ion battery, J. Mater. Chem. A. 2 (2014) 14822-14826. doi: 10.1039/C4TA03349C
|
[56] |
Q. Li, S. Guo, K. Zhu, K. Jiang, X. Zhang, P. He, H. Zhou, A Postspinel Anode Enabling Sodium-Ion Ultralong Cycling and Superfast Transport via 1D Channels, Adv. Energy Mater. 7 (2017) 1700361. doi: 10.1002/aenm.201700361
|
[57] |
A. Chiring, P. Senguttuvan, Chemical pressure-stabilized post spinel-NaMnSnO4 as potential cathode for sodium-ion batteries, Bull. Mater. Sci. 43 (2020) 306. doi: 10.1007/s12034-020-02203-6
|
[58] |
X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, Y.G. Guo, L.J. Wan, Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization, Sci. China Chem. 60 (2017) 1554-1560. doi: 10.1007/s11426-017-9123-0
|
[59] |
G. Ma, S. Li, W. Zhang, Z. Yang, S. Liu, X. Fan, F. Chen, Y. Tian, W. Zhang, S. Yang, M. Li, A General and Mild Approach to Controllable Preparation of Manganese-Based Micro- and Nanostructured Bars for High Performance Lithium-Ion Batteries, Angew. Chem. Int. Ed. 55 (2016) 3667-3671. doi: 10.1002/anie.201511196
|
[60] |
C. Li, F. Geng, B. Hu, B. Hu, Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies, Mater. Today Energy. 17 (2020) 100474. doi: 10.1016/j.mtener.2020.100474
|
[61] |
W. Zhang, Y. Sun, H. Deng, J. Ma, Y. Zeng, Z. Zhu, Z. Lv, H. Xia, X. Ge, S. Cao, Y. Xiao, S. Xi, Y. Du, A. Cao, X. Chen, Dielectric Polarization in Inverse Spinel-Structured Mg2TiO4 Coating to Suppress Oxygen Evolution of Li-Rich Cathode Materials, Adv. Mater. 32 (2020) 2000496. doi: 10.1002/adma.202000496
|
[62] |
S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Reviving Reaction Mechanism of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Battery, Angew. Chem. Int. Ed. 60 (2021) 2208-2220. doi: 10.1002/anie.202000262
|
[63] |
W. Yin, A. Grimaud, G. Rousse, A.M. Abakumov, A. Senyshyn, L. Zhang, S. Trabesinger, A. Iadecola, D. Foix, D. Giaume, J.M. Tarascon, Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2, Nat. Commun. 11 (2020) 1252. doi: 10.1038/s41467-020-14927-4
|
[64] |
H. Wang, B. Yang, X. -Z. Liao, J. Xu, D. Yang, Y. -S. He, Z. -F. Ma, Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges, Electrochim. Acta. 113 (2013) 200-204. doi: 10.1016/j.electacta.2013.09.098
|
[65] |
J. Zheng, P. Yan, W.H. Kan, C. Wang, A. Manthiram, A Spinel-Integrated P2-Type Layered Composite: High-Rate Cathode for Sodium-Ion Batteries, J. Electrochem. Soc. 163 (2016) A584-A591. . doi: 10.1149/2.0041605jes
|
[66] |
C. Deng, P. Skinner, Y. Liu, M. Sun, W. Tong, C. Ma, M.L. Lau, R. Hunt, P. Barnes, J. Xu, H. Xiong, Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries, Chem. Mater. 30 (2018) 8145-8154. doi: 10.1021/acs.chemmater.8b02614
|
[67] |
X. Liang, H. Kim, H.G. Jung, Y.K. Sun, Lithium-Substituted Tunnel/Spinel Heterostructured Cathode Material for High-Performance Sodium-Ion Batteries, Adv. Funct. Mater. 31 (2020) 2008569.
|
[68] |
P. Hou, J. Yin, X. Lu, J. Li, Y. Zhao, X. Xu, A stable layered P3/P2 and spinel intergrowth nanocomposite as a long-life and high-rate cathode for sodium-ion batteries, Nanoscale 10 (2018) 6671-6677. doi: 10.1039/C8NR00650D
|
[69] |
Y. Zhu, Y. Xiao, W. -B. Hua, S. Indris, S. -X. Dou, Y. -G. Guo, S. Chou, Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for High-Performance Sodium-Ion Batteries, Angew. Chem. Int. Ed. 132 (2020) 9385-9390. doi: 10.1002/ange.201915650
|
[70] |
Y. Xiao, Y. -F. Zhu, L. Li, P. -F. Wang, W. Zhang, C. Li, S. -X. Dou, S. -L. Chou, Structural insights into the dynamic and controllable multiphase evolution of layeredspinel heterostructured sodium oxide cathode, Cell Rep. Phy. Sci. 2 (2021) 100547. doi: 10.1016/j.xcrp.2021.100547
|
[71] |
M. Chen, Q. Liu, S. -W. Wang, E. Wang, X. Guo, S. -L. Chou, High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-Ion Batteries: Problems, Progress, and Key Technologies, Adv. Energy Mater. 9 (2019) 1803609. doi: 10.1002/aenm.201803609
|
[72] |
Q. Liu, Z. Hu, W. Li, C. Zou, H. Jin, S. Wang, S. Chou, S. -X. Dou, Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? Energy Environ. Sci. 14 (2020) 158-179.
|
[73] |
Y.N. Hou, X. Li, W. Liu, H. Kou, H. Maleki Kheimeh Sari, X. Song, J. Li, S. Dou, X. Liu, S. Deng, D. Li, X. Sun, ALD derived Fe3+-doping toward high performance P2–Na0.75Ni0.2Co0.2Mn0.6O2 cathode material for sodium ion batteries, Mater. Today Energy. 14 (2019) 100353. doi: 10.1016/j.mtener.2019.100353
|
[74] |
Z.Y. Gu, J.Z. Guo, Z.H. Sun, X.X. Zhao, W.H. Li, X. Yang, H.J. Liang, C.D. Zhao, X.L. Wu, Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries, Science Bulletin 65 (2020) 702-710. doi: 10.1016/j.scib.2020.01.018
|
[75] |
N. Yabuuchi, M. Yano, S. Kuze, S. Komaba, Electrochemical behavior and structural change of spinel-type Li[LixMn2−x]O4 (x=0 and 0.2) in sodium cells, Electrochim. Acta. 82 (2012) 296-301. doi: 10.1016/j.electacta.2012.06.123
|
[76] |
Y. Xiao, Y. Zhu, T. Gao, B. Zhong, X. Guo, LiNi0.5Mn1.5O4 hollow nano-micro hierarchical microspheres as advanced cathode for lithium ion batteries, Ionics 23 (2017) 27-34. doi: 10.1007/s11581-016-1804-0
|
[77] |
G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan, B. Li, K.Y. Ko, P.Y. Hung, C.Z. Lu, Y. Chen, G. Leniec, S.M. Kaczmarek, B. Johannessen, L. Thomsen, V. Peterson, W.K. Pang, Z. Guo, A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping, Angew. Chem. Int. Ed. 59 (2020) 10594-10602. doi: 10.1002/anie.202001454
|
[78] |
J. -Y. Piao, Y. -G. Sun, S. -Y. Duan, A. -M. Cao, X. -L. Wang, R. -J. Xiao, X. -Q. Yu, Y. Gong, L. Gu, Y. Li, Z. -J. Liu, Z. -Q. Peng, R. -M. Qiao, W. -L. Yang, X. -Q. Yang, J.B. Goodenough, L. -J. Wan, Stabilizing Cathode Materials of Lithium-Ion Batteries by Controlling Interstitial Sites on the Surface, Chem 4 (2018) 1685-1695. doi: 10.1016/j.chempr.2018.04.020
|
[79] |
Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond, Chem. Rev. 117 (2017) 10121-10211. doi: 10.1021/acs.chemrev.7b00051
|
[80] |
S. Deng, B. Wang, Y. Yuan, X. Li, Q. Sun, K. Doyle-Davis, M.N. Banis, J. Liang, Y. Zhao, J. Li, R. Li, T. -K. Sham, R. Shahbazian-Yassar, H. Wang, M. Cai, J. Lu, X. Sun, Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes, Nano Energy 65 (2019) 103988. doi: 10.1016/j.nanoen.2019.103988
|
[81] |
Y. Xiao, W. Xiang, J.B. Zhang, Y.F. Zhu, X.D. Guo, Synthesis of spinel LiNi0.5Mn1.5O4 as advanced cathode via a modified oxalate co-precipitation method, Ionics 22 (2016) 1361-1368. doi: 10.1007/s11581-016-1659-4
|
[82] |
W. Sun, Y. Li, K. Xie, S. Luo, G. Bai, X. Tan, C. Zheng, Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries, Nano Energy 54 (2018) 175-183. doi: 10.1016/j.nanoen.2018.10.006
|
[83] |
J.R. Kim, G.G. Amatucci, Structural and Electrochemical Investigation of Na+ Insertion into High-Voltage Spinel Electrodes, Chem. Mater. 27 (2015) 2546-2556. doi: 10.1021/acs.chemmater.5b00283
|
[84] |
A. Vasileiadis, B. Carlsen, N.J.J. de Klerk, M. Wagemaker, Ab Initio Study of Sodium Insertion in the λ-Mn2O4 and Dis/Ordered λ-Mn1.5Ni0.5O4 Spinels, Chem. Mater. 30 (2018) 6646-6659. doi: 10.1021/acs.chemmater.8b01634
|
[85] |
H. Kim, D. Kim, M. Cho, Chemomechanical Design Factors for High Performance in Manganese-Based Spinel Cathode Materials for Advanced Sodium-Ion Batteries, ACS Appl. Mater. Interfaces. 12 (2020) 22789-22797. doi: 10.1021/acsami.0c01687
|
[86] |
X. -J. Nie, X. -T. Xi, Y. Yang, Q. -L. Ning, J. -Z. Guo, M. -Y. Wang, Z. -Y. Gu, X. -L. Wu, Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics, Electrochim. Acta. 320 (2019) 134626. doi: 10.1016/j.electacta.2019.134626
|
[87] |
M. Tang, J. Yang, H. Liu, X. Chen, L. Kong, Z. Xu, J. Huang, Y. Xia, Spinel-Layered Intergrowth Composite Cathode for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces. 12 (2020) 45997-46004. doi: 10.1021/acsami.0c12280
|
[88] |
M.R. Jo, Y. Kim, J. Yang, M. Jeong, K. Song, Y.I. Kim, J.M. Lim, M. Cho, J.H. Shim, Y.M. Kim, W.S. Yoon, Y.M. Kang, Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds, Nat. Commun. 10 (2019) 3385. doi: 10.1038/s41467-019-11195-9
|
[89] |
Y. Zhou, W. Shan, X. Hou, K. -h. Lam, X. Zhao, X. Liu, Y. Wu, Study of spherical Li1.2-xNaxMn0.534Ni0.133Co0.133O2 cathode based on dual Li+/Na+ transport system for Li-ion batteries, Solid State Ionics 350 (2020) 115326. doi: 10.1016/j.ssi.2020.115326
|
[90] |
A.J. Perez, G. Rousse, J. -M. Tarascon, Structural Instability Driven by Li/Na Competition in Na(Li1/3Ir2/3)O2 Cathode Material for Li-Ion and Na-Ion Batteries, Inorg. Chem. 58 (2019) 15644-15651. doi: 10.1021/acs.inorgchem.9b02722
|
[91] |
Z. Chen, L. Zhang, X. Wu, K. Song, B. Ren, T. Li, S. Zhang, Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2||SiO /Graphite lithium-ion batteries, J. Power Sources. 439 (2019) 227056. doi: 10.1016/j.jpowsour.2019.227056
|
[92] |
Y.B. Niu, Y.X. Yin, Y.G. Guo, Nonaqueous Sodium-Ion Full Cells: Status, Strategies, and Prospects, Small. 15 (2019) 1900233. doi: 10.1002/smll.201900233
|
[93] |
C.D. Zhao, J.Z. Guo, Z.Y. Gu, X.T. Wang, X.X. Zhao, W.H. Li, H.Y. Yu, X.L. Wu, Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability, Nano Res (2021), doi: 10.1007/s12274-021-3577-7.
|
[94] |
Y.C. Li, W. Xiang, Z.G. Wu, C.L. Xu, Y.D. Xu, Y. Xiao, Z.G. Yang, C.J. Wu, G.P. Lv, X.D. Guo, Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation, Electrochim. Acta. 291 (2018) 84-94. doi: 10.1016/j.electacta.2018.08.124
|
[95] |
W. Dong, X.X. Zeng, X.D. Zhang, J.Y. Li, J.L. Shi, Y. Xiao, Y. Shi, R. Wen, Y.X. Yin, T.S. Wang, C.R. Wang, Y.G. Guo, Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array, ACS Appl. Mater. Interfaces. 10 (2018) 18005-18011. doi: 10.1021/acsami.8b05288
|
[96] |
T. Wang, X. Yu, M. Fan, Q. Meng, Y. Xiao, Y. Yin, H. Li, Y. -G. Guo, Direct regeneration of spent LiFePO4 by graphite prelithiation strategy, Chem. Commun. 56 (2019) 245.
|
[97] |
Y. You, S. Xin, H.Y. Asl, W. Li, P. -F. Wang, Y. -G. Guo, A. Manthiram, Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries, Chem 4 (2018) 2124-2139. doi: 10.1016/j.chempr.2018.05.018
|
[98] |
Z. Yang, X. Guo, W. Xiang, W. Hua, J. Zhang, F. He, K. Wang, Y. Xiao, B. Zhong, K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: Towards the superior rate capability and cycling performance, J. Alloys Compd. 699 (2017) 358-365. doi: 10.1016/j.jallcom.2016.11.245
|
[99] |
P.F. Wang, Y. Xiao, N. Piao, Q.C. Wang, X. Ji, T. Jin, Y. -J. Guo, S. Liu, T. Deng, C. Cui, L. Chen, Y. -G. Guo, X. -Q. Yang, C. Wang, Both cationic and anionic redox chemistry in a P2-type sodium layered oxide, Nano Energy 69 (2020) 104474. doi: 10.1016/j.nanoen.2020.104474
|
[100] |
Y. Sun, S. Guo, H. Zhou, Exploration of Advanced Electrode Materials for Rechargeable Sodium-Ion Batteries, Adv. Energy Mater. 451 (2018) 1800212.
|
[101] |
Y. Lu, Y. Lu, Z. Niu, J. Chen, Graphene-Based Nanomaterials for Sodium-Ion Batteries, Adv. Energy Mater. 8 (2018) 1702469. doi: 10.1002/aenm.201702469
|
[102] |
J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Sodium-Ion Batteries: From Academic Research to Practical Commercialization, Adv. Energy Mater. 8 (2018) 1701428. doi: 10.1002/aenm.201701428
|