Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Zhu Yan-Fang, Xiao Yao, Dou Shi-Xue, Kang Yong-Mook, Chou Shu-Lei. Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries[J]. eScience, 2021, 1(1): 13-27. doi: 10.1016/j.esci.2021.10.003
Citation: Zhu Yan-Fang, Xiao Yao, Dou Shi-Xue, Kang Yong-Mook, Chou Shu-Lei. Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries[J]. eScience, 2021, 1(1): 13-27. doi: 10.1016/j.esci.2021.10.003

Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries

doi: 10.1016/j.esci.2021.10.003
More Information
  • Corresponding author: E-mail addresses: dake1234@korea.ac.kr (Y.-M. Kang); E-mail addresses: chou@wzu.edu.cn (S.-L. Chou)
  • Received Date: 2021-06-11
  • Revised Date: 2021-09-06
  • Accepted Date: 2021-10-07
  • Available Online: 2021-10-09
  • Sodium-ion batteries (SIBs) have attracted much scientific interest for use in large-scale energy storage systems because sodium is cheaper than lithium. However, the large radius of Na+ and barriers to Na+ transport result in sluggish kinetics and complicated structural distortion, leading to unsatisfactory rate capability and poor cycling stability. It therefore is essential to develop an electrode with enhanced kinetics and a stable structure during cycling to improve SIB performance. Among the various layered oxide cathodes, those with a spinel-like structure could play an important role in boosting electron transport because of their excellent intrinsic conductivity, including by coordinating with Na + insertion/extraction. Moreover, thanks to the inherent high stability of the spinel-like phase, it could function as a stabilizer for host cathode structures. This review summarizes recent advances in spinel engineering on layered oxide cathodes to boost Na+ transport kinetics and provide structural stability to achieve high-performance SIBs, focusing particularly on post-spinel structures, layered oxide integrated spinel-like structures, and spinel transitions. The insights proposed in this review will be useful for guiding rational structural engineering and design to drive the development of new materials and chemistries in Na-based electrode materials.
  • # Dr. Y.-F. Zhu and Dr. Y. Xiao contributed equally to this work.
  • loading
  • [1]
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682. doi: 10.1021/cr500192f
    [2]
    J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529-3614. doi: 10.1039/C6CS00776G
    [3]
    W.H. Lai, Y.X. Wang, Y. Wang, M. Wu, J.Z. Wang, H.K. Liu, S.L. Chou, J. Chen, S.X. Dou, Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation, Nat. Chem. 11 (2019) 695-701. doi: 10.1038/s41557-019-0298-6
    [4]
    C. Wang, L. Liu, S. Zhao, Y. Liu, Y. Yang, H. Yu, S. Lee, G.H. Lee, Y.M. Kang, R. Liu, F. Li, J. Chen, Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun. 12 (2021) 2256. doi: 10.1038/s41467-021-22523-3
    [5]
    X. Xiang, K. Zhang, J. Chen, Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries, Adv. Mater. 27 (2015) 5343-5364. doi: 10.1002/adma.201501527
    [6]
    Y. Xiao, T. Wang, Y. -F. Zhu, H. -Y. Hu, S. -J. Tan, S. Li, P. -F. Wang, W. Zhang, Y. -B. Niu, E. -H. Wang, Y. -J. Guo, X. Yang, L. Liu, Y. -M. Liu, H. Li, X. -D. Guo, Y. -X. Yin, Y. -G. Guo, Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery, Research 2020 (2020) 1469301.
    [7]
    C. Li, L. Liu, J. Kang, Y. Xiao, Y. Feng, F. -F. Cao, H. Zhang, Pristine MOF and COF materials for advanced batteries, Energy Storage Mater 31 (2020) 115-134. doi: 10.1016/j.ensm.2020.06.005
    [8]
    H. -Y. Hu, Y. Xiao, W. Ling, Y. -B. Wu, P. Wang, S. -J. Tan, Y. -S. Xu, Y. -J. Guo, W. -P. Chen, R. -R. Tang, X. -X. Zeng, Y. -X. Yin, X. -W. Wu, A Stable Biomass-Derived Hard Carbon Anode for High-Performance Sodium-Ion Full Battery, Energy Technol 9 (2020) 202000730.
    [9]
    Z. Hu, Q. Liu, W. Lai, Q. Gu, L. Li, M. Chen, W. Wang, S. -L. Chou, Y. Liu, S. -X. Dou, Manipulating Molecular Structure and Morphology to Invoke High-Performance Sodium Storage of Copper Phosphide, Adv. Energy Mater. 10 (2020) 1903542. doi: 10.1002/aenm.201903542
    [10]
    W. Wang, Y. Gang, Z. Hu, Z. Yan, W. Li, Y. Li, Q.F. Gu, Z. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries, Nat. Commun. 11 (2020) 980. doi: 10.1038/s41467-020-14444-4
    [11]
    W. Ling, N. Fu, J. Yue, X.X. Zeng, Q. Ma, Q. Deng, Y. Xiao, L.J. Wan, Y.G. Guo, X.W. Wu, A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries, Adv. Energy Mater. 10 (2020) 1903966. doi: 10.1002/aenm.201903966
    [12]
    R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y. -S. Hu, J. Maier, Fundamentals, status and promise of sodium-based batteries, Nat. Rev. Mater. (2021), doi: 10.1038/s41578-021-00324-w.
    [13]
    W. Li, S.L. Chou, J.Z. Wang, J.H. Kim, H.K. Liu, S.X. Dou, Sn4+xP3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability, Adv. Mater. 26 (2014) 4037-4042. doi: 10.1002/adma.201400794
    [14]
    Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries, Angew. Chem. Int. Ed. 58 (2019) 7020-7024. doi: 10.1002/anie.201902185
    [15]
    M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy Environ. Sci. 8 (2015) 81-102. doi: 10.1039/C4EE03192J
    [16]
    W. Zhang, H. Xia, Z. Zhu, Z. Lv, S. Cao, J. Wei, Y. Luo, Y. Xiao, L. Liu, X. Chen, Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to −130℃, CCS Chem 2 (2020) 1245-1255.
    [17]
    S.J. Tan, J. Yue, X.C. Hu, Z.Z. Shen, W.P. Wang, J.Y. Li, T.T. Zuo, H. Duan, Y. Xiao, Y.X. Yin, R. Wen, Y.G. Guo, Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries, Angew. Chem. Int. Ed. 58 (2019) 7802-7807. doi: 10.1002/anie.201903466
    [18]
    Y. Zhu, S. Wang, Z. Miao, Y. Liu, S.L. Chou, Novel Non-Carbon Sulfur Hosts Based on Strong Chemisorption for Lithium-Sulfur Batteries, Small 14 (2018) 1801987. doi: 10.1002/smll.201801987
    [19]
    Y.B. Niu, Y.X. Yin, W.P. Wang, P.F. Wang, W. Ling, Y. Xiao, Y.G. Guo, In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries, CCS Chem. 1 (2019) 589-597.
    [20]
    Z. Yang, Z. -G. Wu, J. Liu, Y. Liu, S. Gao, J. Wang, Y. Xiao, Y. Zhong, B. Zhong, X. -D. Guo, Platelet-Like CuS Pregnated with Twin Crystal for High Performance Sodium-Ion Storage, J. Mater. Chem. A. 8 (2020) 8049-8057. doi: 10.1039/D0TA00763C
    [21]
    Y. Xiao, Y.F. Zhu, W. Xiang, Z.G. Wu, Y.C. Li, J. Lai, S. Li, E.H. Wang, Z.G. Yang, C.L. Xu, B.H. Zhong, X. Guo, Deciphering an Abnormal Layered-Tunnel Heterostructure Induced via Chemical Substitution for the Sodium Oxide Cathode, Angew. Chem. Int. Ed. 59 (2020) 1491-1495. doi: 10.1002/anie.201912101
    [22]
    S. Li, Y. Xiao, Y. -F. Zhu, Y. -C. Li, T. Chen, D. Wang, Y. -H. Liu, H. Liu, Y. Li, C. Li, G. -K. Wang, Y. -X. Liu, Y. Song, Z. -G. Wu, B. -H. Zhong, X. -D. Guo, A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery, Chem. Eng. J. 412 (2021) 128719. doi: 10.1016/j.cej.2021.128719
    [23]
    Z.G. Yang, Z.G. Wu, W.B. Hua, Y. Xiao, G.K. Wang, Y.X. Liu, C.J. Wu, Y.C. Li, B.H. Zhong, W. Xiang, Y.J. Zhong, X.D. Guo, Hydrangea-Like CuS with Irreversible Amorphization Transition for High-Performance Sodium-Ion Storage, Adv. Sci. 7 (2020) 1903279. doi: 10.1002/advs.201903279
    [24]
    Z.Y. Gu, J.Z. Guo, X.X. Zhao, X.T. Wang, D. Xie, Z.H. Sun, C.D. Zhao, H.J. Liang, W.H. Li, X.L. Wu, High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, InfoMat (2021), doi: 10.1002/inf2.12184.
    [25]
    W. Zuo, J. Qiu, X. Liu, F. Ren, H. Liu, H. He, C. Luo, J. Li, G.F. Ortiz, H. Duan, J. Liu, M.S. Wang, Y. Li, R. Fu, Y. Yang, The stability of P2-layered sodium transition metal oxides in ambient atmospheres, Nat. Commun. 11 (2020) 3544. doi: 10.1038/s41467-020-17290-6
    [26]
    C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. D., M. Wagemaker, L. Chen, Y. -S. Hu, Rational design of layered oxide materials for sodium-ion batteries, Science 370 (2020) 708-711.
    [27]
    Y. Liu, Z. Wu, S. Indris, W. Hua, N.P.M. Casati, A. Tayal, M.S.D. Darma, G. Wang, Y. Liu, C. Wu, Y. Xiao, B. Zhong, X. Guo, The structural origin of enhanced stability of Na3.32Fe2.11Ca0.23(P2O7)2 cathode for Na-ion batteries, Nano Energy 79 (2020) 105417.
    [28]
    H. Ma, H. Su, K. Amine, X. Liu, S. Jaffer, T. Shang, L. Gu, H. Yu, Triphase electrode performance adjustment for rechargeable ion batteries, Nano Energy 43 (2018) 1-10. doi: 10.1016/j.nanoen.2017.11.006
    [29]
    L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo, C. Tian, C. -J. Sun, X. -W. Du, D. Nordlund, H.L. Xin, F. Lin, Deciphering the Cathode-Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials, Adv. Energy Mater. 8 (2018) 1801975. doi: 10.1002/aenm.201801975
    [30]
    S.F. Li, Z.Y. Gu, J.Z. Guo, X.K. Hou, X. Yang, B. Zhao, X.L. Wu, Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries, J. Mater. Sci. Technol. 78 (2021) 176-182. doi: 10.1016/j.jmst.2020.10.047
    [31]
    Y. Xiao, Y.F. Zhu, H.R. Yao, P.F. Wang, X.D. Zhang, H. Li, X. Yang, L. Gu, Y.C. Li, T. Wang, Y.X. Yin, X.D. Guo, B.H. Zhong, Y.G. Guo, A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery, Adv. Energy Mater. 9 (2019) 1803978. doi: 10.1002/aenm.201803978
    [32]
    P.F. Wang, M. Weng, Y. Xiao, Z. Hu, Q. Li, M. Li, Y.D. Wang, X. Chen, X. Yang, Y. Wen, Y.X. Yin, X. Yu, Y. Xiao, J. Zheng, L.J. Wan, F. Pan, Y.G. Guo, An Ordered Ni6-Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode, Adv. Mater. 31 (2019) 1903483. doi: 10.1002/adma.201903483
    [33]
    K. Zhang, D. Kim, Z. Hu, M. Park, G. Noh, Y. Yang, J. Zhang, V. W. -h. Lau, S. -L. Chou, M. Cho, S. -Y. Choi, Y. -M. Kang, Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries, Nat. Commun. 10 (2019) 5203. doi: 10.1038/s41467-018-07646-4
    [34]
    Y. Xiao, P.F. Wang, Y.X. Yin, Y.F. Zhu, Y.B. Niu, X.D. Zhang, J. Zhang, X. Yu, X.D. Guo, B.H. Zhong, Y.G. Guo, Exposing {010} Active Facets by Multiple-Layer Oriented Stacking Nanosheets for High-Performance Capacitive Sodium-Ion Oxide Cathode, Adv. Mater. 30 (2018) 1803765. doi: 10.1002/adma.201803765
    [35]
    Y. Shi, Z. Zhang, P. Jiang, A. Gao, K. Li, Q. Zhang, Y. Sun, X. Lu, D. Cao, X. Lu, Unlocking the potential of P3 structure for practical Sodium-ion batteries by fabricating zero strain framework for Na+ intercalation, Energy Storage Mater 37 (2021) 354-362. doi: 10.1016/j.ensm.2021.02.020
    [36]
    C. Delmas, Sodium and Sodium-Ion Batteries: 50 Years of Research, Adv. Energy Mater. 8 (2018) 1703137. doi: 10.1002/aenm.201703137
    [37]
    Y. Xiao, N.M. Abbasi, Y.F. Zhu, S. Li, S.J. Tan, W. Ling, L. Peng, T. Yang, L. Wang, X.D. Guo, Y.X. Yin, H. Zhang, Y.G. Guo, Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium-Ion Batteries, Adv. Funct. Mater. 30 (2020) 2001334. doi: 10.1002/adfm.202001334
    [38]
    P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance, Adv. Energy Mater. 9 (2017) 1701912.
    [39]
    M.M. Rahman, J. Mao, W.H. Kan, C. -J. Sun, L. Li, Y. Zhang, M. Avdeev, X. -W. Du, F. Lin, An Ordered P2/P3 Composite Layered Oxide Cathode with Long Cycle Life in Sodium-Ion Batteries, ACS Mater. Lett. 1 (2019) 573-581. doi: 10.1021/acsmaterialslett.9b00347
    [40]
    Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, S.L. Chou, Y. Liu, S.X. Dou, The Cathode Choice for Commercialization of Sodium-Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs, Adv. Funct. Mater. 30 (2020) 1909530. doi: 10.1002/adfm.201909530
    [41]
    Y. Xiao, P.F. Wang, Y.X. Yin, Y.F. Zhu, X. Yang, X.D. Zhang, Y. Wang, X.D. Guo, B.H. Zhong, Y.G. Guo, A Layered-Tunnel Intergrowth Structure for High-Performance Sodium-Ion Oxide Cathode, Adv. Energy Mater. 8 (2018) 1800492. doi: 10.1002/aenm.201800492
    [42]
    M.M. Thackeray, Exploiting the Spinel Structure for Li-ion Battery Applications: A Tribute to John B. Goodenough, Adv. Energy Mater. 11 (2020) 2001117.
    [43]
    M. Ren, H. Fang, C. Wang, H. Li, F. Li, Advances on Manganese-Oxide-Based Cathodes for Na-Ion Batteries, Energy & Fuels 34 (2020) 13412-13426.
    [44]
    K. Wang, H. Wan, P. Yan, X. Chen, J. Fu, Z. Liu, H. Deng, F. Gao, M. Sui, Dopant Segregation Boosting High-Voltage Cyclability of Layered Cathode for Sodium Ion Batteries, Adv. Mater. 31 (2019) 1904816. doi: 10.1002/adma.201904816
    [45]
    Y.T. Zhou, X. Sun, B.K. Zou, J.Y. Liao, Z.Y. Wen, C.H. Chen, Cobalt-substituted Na0.44Mn1-xCoxO2: phase evolution and a high capacity positive electrode for sodium-ion batteries, Electrochim. Acta. 213 (2016) 496-503. doi: 10.1016/j.electacta.2016.07.089
    [46]
    K. Jiang, S. Xu, S. Guo, X. Zhang, X. Zhang, Y. Qiao, T. Fang, P. Wang, P. He, H. Zhou, A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life, Nano Energy 52 (2018) 88-94. doi: 10.1016/j.nanoen.2018.07.042
    [47]
    S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries, Nat. Commun. 8 (2017) 135. doi: 10.1038/s41467-017-00157-8
    [48]
    J. Deng, W. -B. Luo, X. Lu, Q. Yao, Z. Wang, H. -K. Liu, H. Zhou, S. -X. Dou, High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode, Adv. Energy Mater. 8 (2017) 1701610.
    [49]
    W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng, L. Qiao, Z. Zhu, Z. Lv, Y. Zhang, X. Ge, S. Xi, Z. Wang, Y. Du, X. Chen, Lowering Charge Transfer Barrier of LiMn2O4 via Nickel Surface Doping To Enhance Li+ Intercalation Kinetics at Subzero Temperatures, J. Am. Chem. Soc. 141 (2019) 14038-14042. doi: 10.1021/jacs.9b05531
    [50]
    C. Zhan, T. Wu, J. Lu, K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review, Energy Environ. Sci. 11 (2018) 243-257. doi: 10.1039/C7EE03122J
    [51]
    Y. Xiao, X.D. Zhang, Y.F. Zhu, P.F. Wang, Y.X. Yin, X. Yang, J.L. Shi, J. Liu, H. Li, X.D. Guo, B.H. Zhong, Y.G. Guo, Suppressing Manganese Dissolution via Exposing Stable {111} Facets for High-Performance Lithium-Ion Oxide Cathode, Adv. Sci. 6 (2019) 1801908.
    [52]
    J.Y. Piao, X.C. Liu, J. Wu, W. Yang, Z. Wei, J. Ma, S.Y. Duan, X.J. Lin, Y.S. Xu, A.M. Cao, L.J. Wan, Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance, ACS Appl. Mater. Interfaces. 10 (2018) 22896-22901. doi: 10.1021/acsami.8b08528
    [53]
    L. Ben, H. Yu, B. Chen, Y. Chen, Y. Gong, X. Yang, L. Gu, X. Huang, Unusual Spinel-to-Layered Transformation in LiMn2O4 Cathode Explained by Electrochemical and Thermal Stability Investigation, ACS Appl. Mater. Interfaces. 9 (2017) 35463-35475. doi: 10.1021/acsami.7b11303
    [54]
    C. Ling, F. Mizuno, Phase Stability of Post-spinel Compound AMn2O4 (A = Li, Na, or Mg) and Its Application as a Rechargeable Battery Cathode, Chem. Mater. 25 (2013) 3062-3071. doi: 10.1021/cm401250c
    [55]
    X. Liu, X. Wang, A. Iyo, H. Yu, D. Li, H. Zhou, High stable post-spinel NaMn2O4 cathode of sodium ion battery, J. Mater. Chem. A. 2 (2014) 14822-14826. doi: 10.1039/C4TA03349C
    [56]
    Q. Li, S. Guo, K. Zhu, K. Jiang, X. Zhang, P. He, H. Zhou, A Postspinel Anode Enabling Sodium-Ion Ultralong Cycling and Superfast Transport via 1D Channels, Adv. Energy Mater. 7 (2017) 1700361. doi: 10.1002/aenm.201700361
    [57]
    A. Chiring, P. Senguttuvan, Chemical pressure-stabilized post spinel-NaMnSnO4 as potential cathode for sodium-ion batteries, Bull. Mater. Sci. 43 (2020) 306. doi: 10.1007/s12034-020-02203-6
    [58]
    X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, Y.G. Guo, L.J. Wan, Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization, Sci. China Chem. 60 (2017) 1554-1560. doi: 10.1007/s11426-017-9123-0
    [59]
    G. Ma, S. Li, W. Zhang, Z. Yang, S. Liu, X. Fan, F. Chen, Y. Tian, W. Zhang, S. Yang, M. Li, A General and Mild Approach to Controllable Preparation of Manganese-Based Micro- and Nanostructured Bars for High Performance Lithium-Ion Batteries, Angew. Chem. Int. Ed. 55 (2016) 3667-3671. doi: 10.1002/anie.201511196
    [60]
    C. Li, F. Geng, B. Hu, B. Hu, Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies, Mater. Today Energy. 17 (2020) 100474. doi: 10.1016/j.mtener.2020.100474
    [61]
    W. Zhang, Y. Sun, H. Deng, J. Ma, Y. Zeng, Z. Zhu, Z. Lv, H. Xia, X. Ge, S. Cao, Y. Xiao, S. Xi, Y. Du, A. Cao, X. Chen, Dielectric Polarization in Inverse Spinel-Structured Mg2TiO4 Coating to Suppress Oxygen Evolution of Li-Rich Cathode Materials, Adv. Mater. 32 (2020) 2000496. doi: 10.1002/adma.202000496
    [62]
    S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Reviving Reaction Mechanism of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Battery, Angew. Chem. Int. Ed. 60 (2021) 2208-2220. doi: 10.1002/anie.202000262
    [63]
    W. Yin, A. Grimaud, G. Rousse, A.M. Abakumov, A. Senyshyn, L. Zhang, S. Trabesinger, A. Iadecola, D. Foix, D. Giaume, J.M. Tarascon, Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2, Nat. Commun. 11 (2020) 1252. doi: 10.1038/s41467-020-14927-4
    [64]
    H. Wang, B. Yang, X. -Z. Liao, J. Xu, D. Yang, Y. -S. He, Z. -F. Ma, Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges, Electrochim. Acta. 113 (2013) 200-204. doi: 10.1016/j.electacta.2013.09.098
    [65]
    J. Zheng, P. Yan, W.H. Kan, C. Wang, A. Manthiram, A Spinel-Integrated P2-Type Layered Composite: High-Rate Cathode for Sodium-Ion Batteries, J. Electrochem. Soc. 163 (2016) A584-A591. . doi: 10.1149/2.0041605jes
    [66]
    C. Deng, P. Skinner, Y. Liu, M. Sun, W. Tong, C. Ma, M.L. Lau, R. Hunt, P. Barnes, J. Xu, H. Xiong, Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries, Chem. Mater. 30 (2018) 8145-8154. doi: 10.1021/acs.chemmater.8b02614
    [67]
    X. Liang, H. Kim, H.G. Jung, Y.K. Sun, Lithium-Substituted Tunnel/Spinel Heterostructured Cathode Material for High-Performance Sodium-Ion Batteries, Adv. Funct. Mater. 31 (2020) 2008569.
    [68]
    P. Hou, J. Yin, X. Lu, J. Li, Y. Zhao, X. Xu, A stable layered P3/P2 and spinel intergrowth nanocomposite as a long-life and high-rate cathode for sodium-ion batteries, Nanoscale 10 (2018) 6671-6677. doi: 10.1039/C8NR00650D
    [69]
    Y. Zhu, Y. Xiao, W. -B. Hua, S. Indris, S. -X. Dou, Y. -G. Guo, S. Chou, Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for High-Performance Sodium-Ion Batteries, Angew. Chem. Int. Ed. 132 (2020) 9385-9390. doi: 10.1002/ange.201915650
    [70]
    Y. Xiao, Y. -F. Zhu, L. Li, P. -F. Wang, W. Zhang, C. Li, S. -X. Dou, S. -L. Chou, Structural insights into the dynamic and controllable multiphase evolution of layeredspinel heterostructured sodium oxide cathode, Cell Rep. Phy. Sci. 2 (2021) 100547. doi: 10.1016/j.xcrp.2021.100547
    [71]
    M. Chen, Q. Liu, S. -W. Wang, E. Wang, X. Guo, S. -L. Chou, High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-Ion Batteries: Problems, Progress, and Key Technologies, Adv. Energy Mater. 9 (2019) 1803609. doi: 10.1002/aenm.201803609
    [72]
    Q. Liu, Z. Hu, W. Li, C. Zou, H. Jin, S. Wang, S. Chou, S. -X. Dou, Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? Energy Environ. Sci. 14 (2020) 158-179.
    [73]
    Y.N. Hou, X. Li, W. Liu, H. Kou, H. Maleki Kheimeh Sari, X. Song, J. Li, S. Dou, X. Liu, S. Deng, D. Li, X. Sun, ALD derived Fe3+-doping toward high performance P2–Na0.75Ni0.2Co0.2Mn0.6O2 cathode material for sodium ion batteries, Mater. Today Energy. 14 (2019) 100353. doi: 10.1016/j.mtener.2019.100353
    [74]
    Z.Y. Gu, J.Z. Guo, Z.H. Sun, X.X. Zhao, W.H. Li, X. Yang, H.J. Liang, C.D. Zhao, X.L. Wu, Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries, Science Bulletin 65 (2020) 702-710. doi: 10.1016/j.scib.2020.01.018
    [75]
    N. Yabuuchi, M. Yano, S. Kuze, S. Komaba, Electrochemical behavior and structural change of spinel-type Li[LixMn2−x]O4 (x=0 and 0.2) in sodium cells, Electrochim. Acta. 82 (2012) 296-301. doi: 10.1016/j.electacta.2012.06.123
    [76]
    Y. Xiao, Y. Zhu, T. Gao, B. Zhong, X. Guo, LiNi0.5Mn1.5O4 hollow nano-micro hierarchical microspheres as advanced cathode for lithium ion batteries, Ionics 23 (2017) 27-34. doi: 10.1007/s11581-016-1804-0
    [77]
    G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan, B. Li, K.Y. Ko, P.Y. Hung, C.Z. Lu, Y. Chen, G. Leniec, S.M. Kaczmarek, B. Johannessen, L. Thomsen, V. Peterson, W.K. Pang, Z. Guo, A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping, Angew. Chem. Int. Ed. 59 (2020) 10594-10602. doi: 10.1002/anie.202001454
    [78]
    J. -Y. Piao, Y. -G. Sun, S. -Y. Duan, A. -M. Cao, X. -L. Wang, R. -J. Xiao, X. -Q. Yu, Y. Gong, L. Gu, Y. Li, Z. -J. Liu, Z. -Q. Peng, R. -M. Qiao, W. -L. Yang, X. -Q. Yang, J.B. Goodenough, L. -J. Wan, Stabilizing Cathode Materials of Lithium-Ion Batteries by Controlling Interstitial Sites on the Surface, Chem 4 (2018) 1685-1695. doi: 10.1016/j.chempr.2018.04.020
    [79]
    Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond, Chem. Rev. 117 (2017) 10121-10211. doi: 10.1021/acs.chemrev.7b00051
    [80]
    S. Deng, B. Wang, Y. Yuan, X. Li, Q. Sun, K. Doyle-Davis, M.N. Banis, J. Liang, Y. Zhao, J. Li, R. Li, T. -K. Sham, R. Shahbazian-Yassar, H. Wang, M. Cai, J. Lu, X. Sun, Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes, Nano Energy 65 (2019) 103988. doi: 10.1016/j.nanoen.2019.103988
    [81]
    Y. Xiao, W. Xiang, J.B. Zhang, Y.F. Zhu, X.D. Guo, Synthesis of spinel LiNi0.5Mn1.5O4 as advanced cathode via a modified oxalate co-precipitation method, Ionics 22 (2016) 1361-1368. doi: 10.1007/s11581-016-1659-4
    [82]
    W. Sun, Y. Li, K. Xie, S. Luo, G. Bai, X. Tan, C. Zheng, Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries, Nano Energy 54 (2018) 175-183. doi: 10.1016/j.nanoen.2018.10.006
    [83]
    J.R. Kim, G.G. Amatucci, Structural and Electrochemical Investigation of Na+ Insertion into High-Voltage Spinel Electrodes, Chem. Mater. 27 (2015) 2546-2556. doi: 10.1021/acs.chemmater.5b00283
    [84]
    A. Vasileiadis, B. Carlsen, N.J.J. de Klerk, M. Wagemaker, Ab Initio Study of Sodium Insertion in the λ-Mn2O4 and Dis/Ordered λ-Mn1.5Ni0.5O4 Spinels, Chem. Mater. 30 (2018) 6646-6659. doi: 10.1021/acs.chemmater.8b01634
    [85]
    H. Kim, D. Kim, M. Cho, Chemomechanical Design Factors for High Performance in Manganese-Based Spinel Cathode Materials for Advanced Sodium-Ion Batteries, ACS Appl. Mater. Interfaces. 12 (2020) 22789-22797. doi: 10.1021/acsami.0c01687
    [86]
    X. -J. Nie, X. -T. Xi, Y. Yang, Q. -L. Ning, J. -Z. Guo, M. -Y. Wang, Z. -Y. Gu, X. -L. Wu, Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics, Electrochim. Acta. 320 (2019) 134626. doi: 10.1016/j.electacta.2019.134626
    [87]
    M. Tang, J. Yang, H. Liu, X. Chen, L. Kong, Z. Xu, J. Huang, Y. Xia, Spinel-Layered Intergrowth Composite Cathode for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces. 12 (2020) 45997-46004. doi: 10.1021/acsami.0c12280
    [88]
    M.R. Jo, Y. Kim, J. Yang, M. Jeong, K. Song, Y.I. Kim, J.M. Lim, M. Cho, J.H. Shim, Y.M. Kim, W.S. Yoon, Y.M. Kang, Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds, Nat. Commun. 10 (2019) 3385. doi: 10.1038/s41467-019-11195-9
    [89]
    Y. Zhou, W. Shan, X. Hou, K. -h. Lam, X. Zhao, X. Liu, Y. Wu, Study of spherical Li1.2-xNaxMn0.534Ni0.133Co0.133O2 cathode based on dual Li+/Na+ transport system for Li-ion batteries, Solid State Ionics 350 (2020) 115326. doi: 10.1016/j.ssi.2020.115326
    [90]
    A.J. Perez, G. Rousse, J. -M. Tarascon, Structural Instability Driven by Li/Na Competition in Na(Li1/3Ir2/3)O2 Cathode Material for Li-Ion and Na-Ion Batteries, Inorg. Chem. 58 (2019) 15644-15651. doi: 10.1021/acs.inorgchem.9b02722
    [91]
    Z. Chen, L. Zhang, X. Wu, K. Song, B. Ren, T. Li, S. Zhang, Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2||SiO /Graphite lithium-ion batteries, J. Power Sources. 439 (2019) 227056. doi: 10.1016/j.jpowsour.2019.227056
    [92]
    Y.B. Niu, Y.X. Yin, Y.G. Guo, Nonaqueous Sodium-Ion Full Cells: Status, Strategies, and Prospects, Small. 15 (2019) 1900233. doi: 10.1002/smll.201900233
    [93]
    C.D. Zhao, J.Z. Guo, Z.Y. Gu, X.T. Wang, X.X. Zhao, W.H. Li, H.Y. Yu, X.L. Wu, Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability, Nano Res (2021), doi: 10.1007/s12274-021-3577-7.
    [94]
    Y.C. Li, W. Xiang, Z.G. Wu, C.L. Xu, Y.D. Xu, Y. Xiao, Z.G. Yang, C.J. Wu, G.P. Lv, X.D. Guo, Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation, Electrochim. Acta. 291 (2018) 84-94. doi: 10.1016/j.electacta.2018.08.124
    [95]
    W. Dong, X.X. Zeng, X.D. Zhang, J.Y. Li, J.L. Shi, Y. Xiao, Y. Shi, R. Wen, Y.X. Yin, T.S. Wang, C.R. Wang, Y.G. Guo, Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array, ACS Appl. Mater. Interfaces. 10 (2018) 18005-18011. doi: 10.1021/acsami.8b05288
    [96]
    T. Wang, X. Yu, M. Fan, Q. Meng, Y. Xiao, Y. Yin, H. Li, Y. -G. Guo, Direct regeneration of spent LiFePO4 by graphite prelithiation strategy, Chem. Commun. 56 (2019) 245.
    [97]
    Y. You, S. Xin, H.Y. Asl, W. Li, P. -F. Wang, Y. -G. Guo, A. Manthiram, Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries, Chem 4 (2018) 2124-2139. doi: 10.1016/j.chempr.2018.05.018
    [98]
    Z. Yang, X. Guo, W. Xiang, W. Hua, J. Zhang, F. He, K. Wang, Y. Xiao, B. Zhong, K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: Towards the superior rate capability and cycling performance, J. Alloys Compd. 699 (2017) 358-365. doi: 10.1016/j.jallcom.2016.11.245
    [99]
    P.F. Wang, Y. Xiao, N. Piao, Q.C. Wang, X. Ji, T. Jin, Y. -J. Guo, S. Liu, T. Deng, C. Cui, L. Chen, Y. -G. Guo, X. -Q. Yang, C. Wang, Both cationic and anionic redox chemistry in a P2-type sodium layered oxide, Nano Energy 69 (2020) 104474. doi: 10.1016/j.nanoen.2020.104474
    [100]
    Y. Sun, S. Guo, H. Zhou, Exploration of Advanced Electrode Materials for Rechargeable Sodium-Ion Batteries, Adv. Energy Mater. 451 (2018) 1800212.
    [101]
    Y. Lu, Y. Lu, Z. Niu, J. Chen, Graphene-Based Nanomaterials for Sodium-Ion Batteries, Adv. Energy Mater. 8 (2018) 1702469. doi: 10.1002/aenm.201702469
    [102]
    J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Sodium-Ion Batteries: From Academic Research to Practical Commercialization, Adv. Energy Mater. 8 (2018) 1701428. doi: 10.1002/aenm.201701428
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (656) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return