Citation: | Tang Bin, Zhao Yibo, Wang Zhiyi, Chen Shiwei, Wu Yifan, Tseng Yuming, Li Lujiang, Guo Yunlong, Zhou Zhen, Bo Shou-Hang. Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries[J]. eScience, 2021, 1(2): 194-202. doi: 10.1016/j.esci.2021.12.001 |
![]() |
![]() |
[1] |
H. Shen, E. Yi, L. Cheng, et al., Solid-state electrolyte considerations for electric vehicle batteries, Sustain. Energy Fuels 3 (2019) 1647–1659. doi: 10.1039/C9SE00119K
|
[2] |
J. Janek, W.G. Zeier, A solid future for battery development, Nat. Energy 1 (2016) 1–4. https://www.nature.com/articles/nenergy2016141
|
[3] |
R. Chen, Q. Li, X. Yu, et al., Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces, Chem. Rev. 120 (2020) 6820–6877. doi: 10.1021/acs.chemrev.9b00268
|
[4] |
Z.Z. Zhang, Y.J. Shao, B. Lotsch, et al., New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11 (2018) 1945–1976. doi: 10.1039/C8EE01053F
|
[5] |
Q. Zhang, Y. Lu, W. Guo, et al., Hunting sodium dendrites in NASICON-based solidstate electrolytes, Energy Mater. Adv. 2021 (2021) 1–10. https://spj.sciencemag.org/journals/energymatadv/2021/9870879/
|
[6] |
G.J. Rees, D. Spencer Jolly, Z. Ning, et al., Imaging sodium dendrite Growth in all-solid-state sodium batteries using 23Na T2 -weighted magnetic resonance imaging, Angew. Chem. Int. Ed. 60 (2021) 2110–2115. doi: 10.1002/anie.202013066
|
[7] |
E.A. Wu, S. Banerjee, H. Tang, et al., A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries, Nat. Commun. 12 (2021) 1256. https://www.nature.com/articles/s41467-021-21488-7
|
[8] |
F.Y. Cheng, J. Liang, Z.L. Tao, et al., Functional materials for rechargeable batteries, Adv. Mater. 23 (2011) 1695–1715. doi: 10.1002/adma.201003587
|
[9] |
Y. Wang, F. Liu, G. Fan, et al., Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes, J. Am. Chem. Soc. 143 (2021) 2829–2837. doi: 10.1021/jacs.0c12051
|
[10] |
Aima Technology and Natrium, The world's first sodium-ion battery powered out of the ice, Available from: https://www.sohu.com/a/476242701_121123766, 2021.
|
[11] |
Science and Technology Department, The first low-speed electric vehicle with sodium ion batteries was unveiled in China, Available from: http://www.iop.cas.cn/xwzx/snxw/201806/t20180608_5024146.html, 2018.
|
[12] |
Y. Tian, G. Zeng, A. Rutt, et al., Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization, Chem. Rev. 121 (2020) 1623–1669. https://pubmed.ncbi.nlm.nih.gov/33356176/
|
[13] |
B. Lee, E. Paek, D. Mitlin, et al., Sodium metal anodes: emerging solutions to dendrite growth, Chem. Rev. 119 (2019) 5416–5460. doi: 10.1021/acs.chemrev.8b00642
|
[14] |
C. Zhao, Q. Wang, Z. Yao, et al., Rational design of layered oxide materials for sodium-ion batteries, Science 370 (2020) 708. https://pubmed.ncbi.nlm.nih.gov/33154140/
|
[15] |
Z. Li, P. Liu, K. Zhu, et al., Solid-State electrolytes for sodium metal batteries, Energy Fuel. 35 (2021) 9063–9079. doi: 10.1021/acs.energyfuels.1c00347
|
[16] |
Y. Lu, L. Li, Q. Zhang, et al., Electrolyte and interface engineering for solid-state sodium batteries, Joule 2 (2018) 1747–1770. doi: 10.1016/j.joule.2018.07.028
|
[17] |
B. Tang, P.W. Jaschin, X. Li, et al., Critical interface between inorganic solid-state electrolyte and sodium metal, Mater. Today 41 (2020) 200–218. doi: 10.1016/j.mattod.2020.08.016
|
[18] |
Y.S. Tian, Y.Z. Sun, D.C. Hannah, et al., Reactivity-guided interface design in Na metal solid-state batteries, Joule 3 (2019) 1037–1050. doi: 10.1016/j.joule.2018.12.019
|
[19] |
Y.S. Tian, T. Shi, W.D. Richards, et al., Compatibility issues between electrodes and electrolytes in solid-state batteries, Energy Environ. Sci. 10 (2017) 1150–1166. doi: 10.1039/C7EE00534B
|
[20] |
Y. Xiao, Y. Wang, S. -H. Bo, et al., Understanding interface stability in solid-state batteries, Nat. Rev. Mater. 5 (2019) 105–126. https://www.nature.com/articles/s41578-019-0157-5
|
[21] |
J. Wu, L. Yuan, W. Zhang, et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries, Energy Environ. Sci. 14 (2020) 12–36. https://pubs.rsc.org/en/content/articlelanding/2020/ee/d0ee02241a#!
|
[22] |
Y. Kato, S. Hori, T. Saito, et al., High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 1 (2016) 16030. doi: 10.1038/nenergy.2016.30
|
[23] |
A. Banerjee, K.H. Park, J.W. Heo, et al., Na3SbS4 : a solution processable sodium superionic Conductor for all-solid-state sodium-ion batteries, Angew. Chem. Int. Ed. 55 (2016) 9634–9638. doi: 10.1002/anie.201604158
|
[24] |
H. Wang, Y. Chen, Z.D. Hood, et al., An air-stable Na3SbS4 superionic conductor Prepared by a Rapid and economic synthetic procedure, Angew. Chem. Int. Ed. 55 (2016) 8551–8555. doi: 10.1002/anie.201601546
|
[25] |
L. Zhang, D. Zhang, K. Yang, et al., Vacancy-contained tetragonal Na3SbS4 superionic conductor, Adv. Sci. 3 (2016) 1600089. doi: 10.1002/advs.201600089
|
[26] |
D.C. Zhang, X.T. Cao, D. Xu, et al., Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries, Electrochim. Acta 259 (2018) 100–109. doi: 10.1016/j.electacta.2017.10.173
|
[27] |
Z. Wang, L. Zhang, X. Shang, et al., Enhanced electrochemical performance enabled by ionic-liquid-coated Na3SbS4 electrolyte encapsulated in flexible filtration membrane, Chem. Eng. J. 428 (2022) 132094. doi: 10.1016/j.cej.2021.132094
|
[28] |
R. Gover, A. Bryan, P. Burns, et al., The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3, Solid State Ionics 177 (2006) 1495–1500. doi: 10.1016/j.ssi.2006.07.028
|
[29] |
J. Wolfenstine, J.L. Allen, J. Sakamoto, et al., Mechanical behavior of Li-ionconducting crystalline oxide-based solid electrolytes: a brief review, Ionics 24 (2017) 1271–1276. doi: 10.1007/s11581-017-2314-4
|
[30] |
X. Zhang, A. Wang, X. Liu, et al., Dendrites in lithium metal anodes: suppression, regulation, and elimination, Accounts Chem. Res. 52 (2019) 3223–3232. doi: 10.1021/acs.accounts.9b00437
|
[31] |
M. Sun, T. Liu, Y. Yuan, et al., Visualizing lithium dendrite formation within solidstate electrolytes, ACS Energy Lett. 6 (2021) 451–458. doi: 10.1021/acsenergylett.0c02314
|
[32] |
X. Mei, Y. Wu, Y. Gao, et al., A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes, Mater. Today Commun. 24 (2020) 101004. doi: 10.1016/j.mtcomm.2020.101004
|
[33] |
J.C. Bachman, S. Muy, A. Grimaud, et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chem. Rev. 116 (2016) 140–162. doi: 10.1021/acs.chemrev.5b00563
|
[34] |
Y. Gao, A.M. Nolan, P. Du, et al., Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors, Chem. Rev. 120 (2020) 5954–6008. doi: 10.1021/acs.chemrev.9b00747
|
[35] |
J.W. Fergus, Ion transport in sodium ion conducting solid electrolytes, Solid State Ionics 227 (2012) 102–112. doi: 10.1016/j.ssi.2012.09.019
|
[36] |
Q. Zhao, X. Liu, J. Zheng, et al., Designing electrolytes with polymerlike glassforming properties and fast ion transport at low temperatures, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 26053–26060. doi: 10.1073/pnas.2004576117
|
[37] |
S. Munoz, S. Greenbaum, Review of recent nuclear magnetic resonance studies of ion transport in polymer electrolytes, Membranes 8 (2018). https://pubmed.ncbi.nlm.nih.gov/30513636/
|
[38] |
Z. Zou, Y. Li, Z. Lu, et al., Mobile ions in composite solids, Chem. Rev. 120 (2020) 4169–4221. doi: 10.1021/acs.chemrev.9b00760
|
[39] |
D. Fragiadakis, S. Dou, R.H. Colby, et al., Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide), J. Chem. Phys. 130 (2009), 064907. doi: 10.1063/1.3063659
|
[40] |
Y. Huang, M. Ma, Y. Guo, Melt crystallization and segmental dynamics of poly(ethylene oxide) confined in a solid electrolyte composite, J. Polym. Sci. 58 (2020) 466–477. doi: 10.1002/pol.20190095
|
[41] |
C.F.N. Marchiori, R.P. Carvalho, M. Ebadi, et al., Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts, Chem. Mater. 32 (2020) 7237–7246. doi: 10.1021/acs.chemmater.0c01489
|
[42] |
C. Fu, V. Venturi, J. Kim, et al., Universal chemomechanical design rules for solidion conductors to prevent dendrite formation in lithium metal batteries, Nat. Mater. 19 (2020) 758–766. doi: 10.1038/s41563-020-0655-2
|
[43] |
S. Ohno, T. Bernges, J. Buchheim, et al., How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study, ACS Energy Lett. 5 (2020) 910–915. doi: 10.1021/acsenergylett.9b02764
|
[44] |
S. Breuer, M. Uitz, H.M.R. Wilkening, Rapid Li ion dynamics in the interfacial regions of nanocrystalline solids, J. Phys. Chem. Lett. 9 (2018) 2093–2097. doi: 10.1021/acs.jpclett.8b00418
|
[45] |
Q. Pang, L. Zhou, L.F. Nazar, Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 12389–12394. doi: 10.1073/pnas.1809187115
|
[46] |
Z. Deng, Z. Wang, I. -H. Chu, et al., Elastic properties of alkali superionic conductor electrolytes from first principles calculations, J. Electrochem. Soc. 163 (2015) A67–A74. doi: 10.1149/2.0061602jes
|
[47] |
C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc. 152 (2005) A396–A404. doi: 10.1149/1.1850854
|
[48] |
C. Monroe, J. Newman, The effect of interfacial deformation on electrodeposition kinetics, J. Electrochem. Soc. 151 (2004) A880. doi: 10.1149/1.1710893
|
[49] |
C.N. Singman, Atomic volume and allotropy of the elements, J. Chem. Educ. 61 (1984) 137. doi: 10.1021/ed061p137
|
[50] |
Z. Ahmad, V. Viswanathan, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes, Phys. Rev. Lett. 119 (2017) 056003. doi: 10.1103/PhysRevLett.119.056003
|
[51] |
Y. Marcus, H. Donald Brooke Jenkins, L. Glasser, Ion volumes: a comparison, Dalton Trans. (2002) 3795–3798.
|
[52] |
R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751–767. doi: 10.1107/S0567739476001551
|
[53] |
V. Lacivita, Y. Wang, S.H. Bo, et al., Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries, J. Mater. Chem. 7 (2019) 8144–8155. doi: 10.1039/C8TA10498K
|
[54] |
E. Matios, H. Wang, C.L. Wang, et al., Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability, ACS Appl. Mater. Interfaces 11 (2019) 5064–5072. doi: 10.1021/acsami.8b19519
|
[55] |
Y.L. Ruan, F. Guo, J.J. Liu, et al., Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery, Ceram. Int. 45 (2019) 1770–1776. doi: 10.1016/j.ceramint.2018.10.062
|
[56] |
L. Duchene, R.S. Kuhnel, D. Rentsch, et al., A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture, Chem. Commun. 53 (2017) 4195–4198. doi: 10.1039/C7CC00794A
|