Citation: | Zhang Shichao, Li Siyuan, Lu Yingying. Designing safer lithium-based batteries with nonflammable electrolytes: A review[J]. eScience, 2021, 1(2): 163-177. doi: 10.1016/j.esci.2021.12.003 |
[1] |
M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657. doi: 10.1038/451652a
|
[2] |
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. doi: 10.1021/cm901452z
|
[3] |
M. Winter, B. Barnett, K. Xu, Before Li ion batteries, Chem. Rev. 118 (2018) 11433–11456. doi: 10.1021/acs.chemrev.8b00422
|
[4] |
M.S. Whittingham, Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev. 114 (2014) 11414–11443. doi: 10.1021/cr5003003
|
[5] |
J. Liu, Z. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy 4 (2019) 180–186. doi: 10.1038/s41560-019-0338-x
|
[6] |
S. Li, W. Zhang, Q. Wu, et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries, Angew. Chem. Int. Ed. 59 (2020) 14935–14941. doi: 10.1002/anie.202004853
|
[7] |
X. Feng, M. Ouyang, X. Liu, et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review, Energy Storage Mater. 10 (2018) 246–267. doi: 10.1016/j.ensm.2017.05.013
|
[8] |
Y. Chen, Y. Kang, Y. Zhao, et al., A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards, J. Energy Chem. 59 (2021) 83–99. doi: 10.1016/j.jechem.2020.10.017
|
[9] |
P. Lyu, X. Liu, J. Qu, et al., Recent advances of thermal safety of lithium ion battery for energy storage, Energy Storage Mater. 31 (2020) 195–220. doi: 10.1016/j.ensm.2020.06.042
|
[10] |
M.D. Tikekar, S. Choudhury, Z. Tu, et al., Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy 1 (2016) 16114. doi: 10.1038/nenergy.2016.114
|
[11] |
S. Li, Q. Liu, J. Zhou, et al., Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li-Philic property enabling highly stable alkali metal batteries, Adv. Funct. Mater. 29 (2019) 1808847. doi: 10.1002/adfm.201808847
|
[12] |
X. Feng, D. Ren, X. He, et al., Mitigating thermal runaway of lithium-ion batteries, Joule 4 (2020) 743–770. doi: 10.1016/j.joule.2020.02.010
|
[13] |
X. Liu, D. Ren, H. Hsu, et al., Thermal runaway of lithium-ion batteries without internal short circuit, Joule 2 (2018) 2047–2064. doi: 10.1016/j.joule.2018.06.015
|
[14] |
Y. Li, X. Liu, L. Wang, et al., Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials, Nano Energy 85 (2021) 105878. doi: 10.1016/j.nanoen.2021.105878
|
[15] |
G. Xu, L. Huang, C. Lu, et al., Revealing the multilevel thermal safety of lithium batteries, Energy Storage Mater. 31 (2020) 72–86. doi: 10.1016/j.ensm.2020.06.004
|
[16] |
D. Ren, X. Feng, L. Liu, et al., Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition, Energy Storage Mater. 34 (2021) 563–573. doi: 10.1016/j.ensm.2020.10.020
|
[17] |
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114 (2014) 11503–11618. doi: 10.1021/cr500003w
|
[18] |
S.J. Tan, W.P. Wang, Y.F. Tian, et al., Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: progress and prospects, Adv. Funct. Mater. 2105253 (2021).
|
[19] |
X. Wang, S. Li, W. Zhang, et al., Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability, Nano Energy 89 (2021) 106353. doi: 10.1016/j.nanoen.2021.106353
|
[20] |
K. Deng, Q. Zeng, D. Wang, et al., Nonflammable organic electrolytes for highsafety lithium-ion batteries, Energy Storage Mater. 32 (2020) 425–447. doi: 10.1016/j.ensm.2020.07.018
|
[21] |
J. Chen, A. Naveed, Y. Nuli, et al., Designing an intrinsically safe organic electrolyte for rechargeable batteries, Energy Storage Mater. 31 (2020) 382–400. doi: 10.1016/j.ensm.2020.06.027
|
[22] |
K. Liu, Y. Liu, D. Lin, et al., Materials for lithium-ion battery safety, Sci. Adv. 4 (2018), eaas9820. doi: 10.1126/sciadv.aas9820
|
[23] |
Q. Wang, L. Jiang, Y. Yu, et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy 55 (2019) 93–114. doi: 10.1016/j.nanoen.2018.10.035
|
[24] |
Q.K. Zhang, X.Q. Zhang, H. Yuan, et al., Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives, Small Sci. (2021) 2100058.
|
[25] |
T. Dagger, B.R. Rad, F.M. Schappacher, et al., Comparative performance evaluation of flame retardant additives for lithium ion batteries – I. Safety, chemical and electrochemical stabilities, Energy Technol. 6 (2018) 2011–2022. doi: 10.1002/ente.201800132
|
[26] |
T. Dagger, P. Niehoff, C. Lürenbaum, et al., Comparative performance evaluation of flame retardant additives for lithium ion batteries – Ⅱ. Full cell cycling and postmortem analyses, Energy Technol. 6 (2018) 2023–2035. doi: 10.1002/ente.201800133
|
[27] |
J. Wang, Y. Yamada, K. Sodeyama, et al., Fire-extinguishing organic electrolytes for safe batteries, Nat. Energy 3 (2018) 22–29. doi: 10.1038/s41560-017-0033-8
|
[28] |
H. Chen, J. Liu, X. Zhou, et al., Rapid leakage responsive and self-healing Li-metal batteries, Chem. Eng. J. 404 (2021) 126470. doi: 10.1016/j.cej.2020.126470
|
[29] |
J. Ju, S. Dong, Y. Cui, et al., Leakage-proof electrolyte chemistry for a highperformance lithium–sulfur battery, Angew. Chem. Int. Ed. 60 (2021) 16487–16491. doi: 10.1002/anie.202103209
|
[30] |
A. Eftekhari, High-energy aqueous lithium batteries, Adv. Energy Mater. 8 (2018) 1801156. doi: 10.1002/aenm.201801156
|
[31] |
M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, et al., Processing thin but robust electrolytes for solid-state batteries, Nat. Energy 6 (2021) 227–239. doi: 10.1038/s41560-020-00759-5
|
[32] |
J. Xiang, Y. Zhang, B. Zhang, et al., A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature, Energy Environ. Sci. 14 (2021) 3510–3521. doi: 10.1039/D1EE00049G
|
[33] |
X. Zou, Q. Lu, Y. Zhong, et al., Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li-O2/air batteries workable under hurdle conditions, Small 14 (2018) 1801798. doi: 10.1002/smll.201801798
|
[34] |
H. Yang, W.R. Leow, X. Chen, Thermal-responsive polymers for enhancing safety of electrochemical storage devices, Adv. Mater. 30 (2018) 1704347. doi: 10.1002/adma.201704347
|
[35] |
L. Peng, X. Kong, H. Li, et al., A rational design for a high-safety lithium-ion battery assembled with a heatproof–fireproof bifunctional separator, Adv. Funct. Mater. 31 (2021) 2008537. doi: 10.1002/adfm.202008537
|
[36] |
X. Zhang, Q. Sun, C. Zhen, et al., Recent progress in flame-retardant separators for safe lithium-ion batteries, Energy Storage Mater. 37 (2021) 628–647. doi: 10.1016/j.ensm.2021.02.042
|
[37] |
L.Y. Chou, Y. Ye, H.K. Lee, et al., Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries, Nano Lett. 21 (2021) 2074–2080. doi: 10.1021/acs.nanolett.0c04568
|
[38] |
Z. Liu, Q. Hu, S. Guo, et al., Thermoregulating separators based on phase-change materials for safe lithium-ion batteries, Adv. Mater. 33 (2021) 2008088. doi: 10.1002/adma.202008088
|
[39] |
Q. Zhou, S. Dong, Z. Lv, et al., A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries, Adv. Energy Mater. 10 (2020) 1903441. doi: 10.1002/aenm.201903441
|
[40] |
Y. Ye, L.Y. Chou, Y. Liu, et al., Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries, Nat. Energy 5 (2020) 786–793. doi: 10.1038/s41560-020-00702-8
|
[41] |
H. Li, L. Peng, D. Wu, et al., Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries, Adv. Energy Mater. 9 (2019) 1802930. doi: 10.1002/aenm.201802930
|
[42] |
K. Xu, M.S. Ding, S.S. Zhang, et al., An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, J. Electrochem. Soc. 149 (2002) A622–A626. doi: 10.1149/1.1467946
|
[43] |
X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solventcontaining electrolytes for lithium-ion batteries: I. fundamental properties, J. Electrochem. Soc. 148 (2001) A1058. doi: 10.1149/1.1397773
|
[44] |
X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solventcontaining electrolytes for lithium-ion batteries: Ⅱ. the use of an amorphous carbon anode, J. Electrochem. Soc. 148 (2001) A1066. doi: 10.1149/1.1397774
|
[45] |
X. Wang, C. Yamada, H. Naito, et al., High-concentration trimethyl phosphatebased nonflammable electrolytes with improved charge–discharge performance of a graphite anode for lithium-ion cells, J. Electrochem. Soc. 153 (2006) A135. doi: 10.1149/1.2136078
|
[46] |
K. Takada, Y. Yamada, A. Yamada, Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent, ACS Appl. Mater. Interfaces 11 (2019) 35770–35776. doi: 10.1021/acsami.9b12709
|
[47] |
H. Jia, Y. Xu, X. Zhang, et al., Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries, Angew. Chem. Int. Ed. 60 (2021) 12999–13006. doi: 10.1002/anie.202102403
|
[48] |
T. Zhang, Y. Li, N. Chen, et al., Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries, ACS Appl. Mater. Interfaces 13 (2021) 681–687. doi: 10.1021/acsami.0c19075
|
[49] |
P. Shi, H. Zheng, X. Liang, et al., A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries, Chem. Commun. 54 (2018) 4453–4456. doi: 10.1039/C8CC00994E
|
[50] |
H. Nakagawa, M. Ochida, Y. Domi, et al., Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester, J. Power Sources 212 (2012) 148–153. doi: 10.1016/j.jpowsour.2012.04.013
|
[51] |
Z. Zeng, V. Murugesan, K.S. Han, et al., Non-flammable electrolytes with high saltto-solvent ratios for Li-ion and Li-metal batteries, Nat. Energy 3 (2018) 674–681. doi: 10.1038/s41560-018-0196-y
|
[52] |
X. Cao, Y. Xu, L. Zhang, et al., Nonflammable electrolytes for lithium ion batteries enabled by ultraconformal passivation interphases, ACS Energy Lett. 4 (2019) 2529–2534. doi: 10.1021/acsenergylett.9b01926
|
[53] |
H. Jia, L. Zou, P. Gao, et al., High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater. 9 (2019) 1900784. doi: 10.1002/aenm.201900784
|
[54] |
H. Yang, Q. Li, C. Guo, et al., Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode, Chem. Commun. 54 (2018) 4132–4135. doi: 10.1039/C7CC09942H
|
[55] |
H. Yang, C. Guo, J. Chen, et al., An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries, Angew. Chem. Int. Ed. 58 (2019) 791–795. doi: 10.1002/anie.201811291
|
[56] |
S. Chen, J. Zheng, L. Yu, et al., High-efficiency lithium metal batteries with fireretardant electrolytes, Joule 2 (2018) 1548–1558. doi: 10.1016/j.joule.2018.05.002
|
[57] |
S. Li, S. Zhang, S. Chai, et al., Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte, Energy Storage Mater. 42 (2021) 628–635. doi: 10.1016/j.ensm.2021.08.015
|
[58] |
S.J. Tan, J. Yue, X.C. Hu, et al., Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 7802–7807. doi: 10.1002/anie.201903466
|
[59] |
H. Zhang, J. Luo, M. Qi, et al., Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions, Angew. Chem. Int. Ed. 133 (2021) 19332–19339. doi: 10.1002/ange.202103909
|
[60] |
H.F. Xiang, H.Y. Xu, Z.Z. Wang, et al., Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes, J. Power Sources 173 (2007) 562–564. doi: 10.1016/j.jpowsour.2007.05.001
|
[61] |
J. Feng, P. Ma, H. Yang, et al., Understanding the interactions of phosphonatebased flame-retarding additives with graphitic anode for lithium ion batteries, Electrochim. Acta 114 (2013) 688–692. doi: 10.1016/j.electacta.2013.10.104
|
[62] |
Z. Zeng, B. Wu, L. Xiao, et al., Safer lithium ion batteries based on nonflammable electrolyte, J. Power Sources 279 (2015) 6–12. doi: 10.1016/j.jpowsour.2014.12.150
|
[63] |
Y.E. Hyung, D.R. Vissers, K. Amine, Flame-retardant additives for lithium-ion batteries, J. Power Sources 119–121 (2003) 383–387. doi: 10.1016/S0378-7753(03)00225-8
|
[64] |
X. Liu, X. Shen, F. Zhong, et al., Enabling electrochemical compatibility of nonflammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent, Chem. Commun. 56 (2020) 6559–6562. doi: 10.1039/D0CC02940H
|
[65] |
S. Chen, Z. Wang, H. Zhao, et al., A novel flame retardant and film-forming electrolyte additive for lithium ion batteries, J. Power Sources 187 (2009) 229–232. doi: 10.1016/j.jpowsour.2008.10.091
|
[66] |
Z. Yu, J. Zhang, C. Wang, et al., Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries, J. Energy Chem. 51 (2020) 154–160. doi: 10.1016/j.jechem.2020.03.034
|
[67] |
G.J. Chung, J. Han, S.W. Song, Fire-preventing LiPF6 and ethylene carbonatebased organic liquid electrolyte system for safer and outperforming lithium-ion batteries, ACS Appl. Mater. Interfaces 12 (2020) 42868–42879. doi: 10.1021/acsami.0c12702
|
[68] |
T. Yang, S. Li, W. Wang, et al., Nonflammable functional electrolytes with allfluorinated solvents matching rechargeable high-voltage Li-metal batteries with Ni-rich ternary cathode, J. Power Sources 505 (2021) 230055. doi: 10.1016/j.jpowsour.2021.230055
|
[69] |
L. Chen, X. Fan, E. Hu, et al., Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery, Chemistry 5 (2019) 896–912. doi: 10.1016/j.chempr.2019.02.003
|
[70] |
X. Fan, L. Chen, O. Borodin, et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol. 13 (2018) 715–722. doi: 10.1038/s41565-018-0183-2
|
[71] |
Q. Zheng, Y. Yamada, R. Shang, et al., A cyclic phosphate-based battery electrolyte for high voltage and safe operation, Nat. Energy 5 (2020) 291–298. doi: 10.1038/s41560-020-0567-z
|
[72] |
Z. Zeng, X. Liu, X. Jiang, et al., Enabling an intrinsically safe and high-energydensity 4.5 V-class Li-ion battery with nonflammable electrolyte, InfoMat 2 (2020) 984–992. doi: 10.1002/inf2.12089
|
[73] |
Y. Gu, S. Fang, L. Yang, et al., Tris(2, 2, 2-trifluoroethyl) phosphate as a cosolvent for a nonflammable electrolyte in lithium-ion batteries, ACS Appl. Energ. Mater. 4 (2021) 4919–4927.
|
[74] |
S. Yang, Y. Zhang, Z. Li, et al., Rational electrolyte design to form inorganic–polymeric interphase on silicon-based anodes, ACS Energy Lett. 6 (2021) 1811–1820. doi: 10.1021/acsenergylett.1c00514
|
[75] |
H.W. Rollins, M.K. Harrup, E.J. Dufek, et al., Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes, J. Power Sources 263 (2014) 66–74. doi: 10.1016/j.jpowsour.2014.04.015
|
[76] |
M.K. Harrup, H.W. Rollins, D.K. Jamison, et al., Unsaturated phosphazenes as cosolvents for lithium-ion battery electrolytes, J. Power Sources 278 (2015) 794–801. doi: 10.1016/j.jpowsour.2014.07.109
|
[77] |
Y. Li, Y. An, Y. Tian, et al., High-safety and high-voltage lithium metal batteries enabled by a nonflammable ether-based electrolyte with phosphazene as a cosolvent, ACS Appl. Mater. Interfaces 13 (2021) 10141–10148. doi: 10.1021/acsami.1c00661
|
[78] |
L. Xia, Y. Xia, Z. Liu, A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries, J. Power Sources 278 (2015) 190–196. doi: 10.1016/j.jpowsour.2014.11.140
|
[79] |
X. Li, W. Li, L. Chen, et al., Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries, J. Power Sources 378 (2018) 707–716. doi: 10.1016/j.jpowsour.2017.12.085
|
[80] |
J. Liu, X. Song, L. Zhou, et al., Fluorinated phosphazene derivative – a promising electrolyte additive for high voltage lithium ion batteries: from electrochemical performance to corrosion mechanism, Nano Energy 46 (2018) 404–414. doi: 10.1016/j.nanoen.2018.02.029
|
[81] |
Q. Liu, Z. Chen, Y. Liu, et al., Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries, Energy Storage Mater. 37 (2021) 521–529. doi: 10.1016/j.ensm.2021.02.039
|
[82] |
Y. Li, Y. An, Y. Tian, et al., Stable and safe lithium metal batteries with Ni-rich cathodes enabled by a high efficiency flame retardant additive, J. Electrochem. Soc. 166 (2019) A2736–A2740. doi: 10.1149/2.0081913jes
|
[83] |
T. Dagger, C. Lürenbaum, F.M. Schappacher, et al., Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements, J. Power Sources 342 (2017) 266–272. doi: 10.1016/j.jpowsour.2016.12.007
|
[84] |
Y. Ji, P. Zhang, M. Lin, et al., Toward a stable electrochemical interphase with enhanced safety on high-voltage LiCoO2 cathode: a case of phosphazene additives, J. Power Sources 359 (2017) 391–399. doi: 10.1016/j.jpowsour.2017.05.091
|
[85] |
Y. Gu, S. Fang, L. Yang, et al., A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range, J. Mater. Chem. A 9 (2021) 15363–15372. doi: 10.1039/D1TA01088C
|
[86] |
J. Feng, X. Gao, L. Ci, et al., A novel bifunctional additive for 5 V-class, highvoltage lithium ion batteries, RSC Adv. 6 (2016) 7224–7228. doi: 10.1039/C5RA22547G
|
[87] |
M. Armand, F. Endres, D.R. MacFarlane, et al., Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621–629. doi: 10.1038/nmat2448
|
[88] |
C.F.J. Francis, I.L. Kyratzis, A.S. Best, Lithium-ion battery separators for ionicliquid electrolytes: a review, Adv. Mater. 32 (2020) 1904205. doi: 10.1002/adma.201904205
|
[89] |
S. Fang, L. Qu, D. Luo, et al., Novel mixtures of ether-functionalized ionic liquids and non-flammable methylperfluorobutylether as safe electrolytes for lithium metal batteries, RSC Adv. 5 (2015) 33897–33904. doi: 10.1039/C5RA01713K
|
[90] |
Z. Wang, Y. Sun, Y. Mao, et al., Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries, Energy Storage Mater. 30 (2020) 228–237. doi: 10.1016/j.ensm.2020.05.020
|
[91] |
F. Wu, S. Fang, M. Kuenzel, et al., Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries, Joule (2021), https://doi.org/10.1016/j.joule.2021.06.014. doi: 10.1016/j.joule.2021.06.014
|
[92] |
S. Lee, K. Park, B. Koo, et al., Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes, Adv. Funct. Mater. 30 (2020) 2003132. doi: 10.1002/adfm.202003132
|
[93] |
Z. Wang, F. Zhang, Y. Sun, et al., Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries, Adv. Energy Mater. 11 (2021) 2003752. doi: 10.1002/aenm.202003752
|
[94] |
Q. Zhang, K. De Oliveira Vigier, S. Royer, et al., Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108–7146. doi: 10.1039/c2cs35178a
|
[95] |
J. Wu, Q. Liang, X. Yu, et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective, Adv. Funct. Mater. 31 (2021) 2011102. doi: 10.1002/adfm.202011102
|
[96] |
B.B. Hansen, S. Spittle, B. Chen, et al., Deep eutectic solvents: a review of fundamentals and applications, Chem. Rev. 121 (2021) 1232–1285. doi: 10.1021/acs.chemrev.0c00385
|
[97] |
Z. Hu, F. Xian, Z. Guo, et al., Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries, Chem. Mater. 32 (2020) 3405–3413. doi: 10.1021/acs.chemmater.9b05003
|
[98] |
J. Song, Y. Si, W. Guo, et al., Organosulfide-based deep eutectic electrolyte for lithium batteries, Angew. Chem. Int. Ed. 60 (2021) 9881–9885. doi: 10.1002/anie.202016875
|
[99] |
P. Jiang, L. Chen, H. Shao, et al., Methylsulfonylmethane-based deep eutectic solvent as a new type of green electrolyte for a high-energy-density aqueous lithium-ion battery, ACS Energy Lett. 4 (2019) 1419–1426. doi: 10.1021/acsenergylett.9b00968
|
[100] |
W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueouselectrolytes, Science 264 (1994) 1115–1118. doi: 10.1126/science.264.5162.1115
|
[101] |
F. Wang, L. Suo, Y. Liang, et al., Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries, Adv. Energy Mater. 7 (2017) 1600922. doi: 10.1002/aenm.201600922
|
[102] |
F. Wang, Y. Lin, L. Suo, et al., Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive, Energy Environ. Sci. 9 (2016) 3666–3673. doi: 10.1039/C6EE02604D
|
[103] |
Y. Shen, B. Liu, X. Liu, et al., Water-in-salt electrolyte for safe and high-energy aqueous battery, Energy Storage Mater. 34 (2021) 461–474. doi: 10.1016/j.ensm.2020.10.011
|
[104] |
L.M. Suo, O. Borodin, T. Gao, et al., Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science 350 (2015) 938–943. doi: 10.1126/science.aab1595
|
[105] |
Y. Shang, N. Chen, Y. Li, et al., An "ether-in-water" electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries, Adv. Mater. 32 (2020) 2004017. doi: 10.1002/adma.202004017
|
[106] |
L. Suo, O. Borodin, W. Sun, et al., Advanced high -voltageaqueous lithium -ionbattery enabled by " water-in-bisalt"electrolyte, Angew. Chem. Int. Ed. 55 (2016) 7136–7141. doi: 10.1002/anie.201602397
|
[107] |
J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries, Nat. Mater. 19 (2020) 1006–1011. doi: 10.1038/s41563-020-0667-y
|
[108] |
A. Banerjee, X.F. Wang, C.C. Fang, et al., Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes, Chem. Rev. 120 (2020) 6878–6933. doi: 10.1021/acs.chemrev.0c00101
|
[109] |
A.K. Mishra, H.A. Chaliyawala, R. Patel, et al., Review-inorganic solid state electrolytes: insights on current and future scope, J. Electrochem. Soc. 168 (2021), 080536. doi: 10.1149/1945-7111/ac1dcc
|
[110] |
R. Chen, A.M. Nolan, J. Lu, et al., The thermal stability of lithium solid electrolytes with metallic lithium, Joule 4 (2020) 812–821. doi: 10.1016/j.joule.2020.03.012
|
[111] |
J. Li, Y. Cai, H. Wu, et al., Polymers in lithium-ion and lithium metal batteries, Adv. Energy Mater. 11 (2021) 2003239. doi: 10.1002/aenm.202003239
|
[112] |
L. Han, C. Liao, X. Mu, et al., Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al, P-rich SEI layer, Nano Lett. 21 (2021) 4447–4453. doi: 10.1021/acs.nanolett.1c01137
|
[113] |
Y. Cui, J.Y. Wan, Y.S. Ye, et al., A fireproof, lightweight, polymer-polymer solidstate electrolyte for safe lithium batteries, Nano Lett. 20 (2020) 1686–1692. doi: 10.1021/acs.nanolett.9b04815
|
[114] |
J. Guo, Y. Chen, Y. Xiao, et al., Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries, Chem. Eng. J. 422 (2021) 130526. doi: 10.1016/j.cej.2021.130526
|
[115] |
C. Li, G. Liu, K. Wang, et al., Electrochemically-matched and nonflammable janus solid electrolyte for lithium-metal batteries, ACS Appl. Mater. Interfaces 13 (2021) 39271–39281. doi: 10.1021/acsami.1c08687
|
[116] |
S. Wang, L. Zhou, M.K. Tufail, et al., In-situ synthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries, Chem. Eng. J. 415 (2021) 128846. doi: 10.1016/j.cej.2021.128846
|
[117] |
L. Li, C. Xu, R. Chang, et al., Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules, Energy Storage Mater. 40 (2021) 329–336. doi: 10.1016/j.ensm.2021.05.018
|
[118] |
Z. Deng, X. Lin, Z. Huang, et al., Recent progress on advanced imaging techniques for lithium-ion batteries, Adv. Energy Mater. 11 (2021) 2000806. doi: 10.1002/aenm.202000806
|
[119] |
Z. Deng, Z. Huang, Y. Shen, et al., Ultrasonic scanning to observe wetting and "unwetting" in Li-ion pouch cells, Joule 4 (2020) 2017–2029. doi: 10.1016/j.joule.2020.07.014
|