Citation: | Tang Jiayong, Peng Xiyue, Lin Tongen, Huang Xia, Luo Bin, Wang Lianzhou. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage[J]. eScience, 2021, 1(2): 203-211. doi: 10.1016/j.esci.2021.12.004 |
![]() |
![]() |
[1] |
P.K. Nayak, L. Yang, W. Brehm, et al., From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises, Angew. Chem. Int. Ed. 57 (2018) 102–120. doi: 10.1002/anie.201703772
|
[2] |
J. Hwang, S. Myung, Y. Sun, et al., Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529–3614. doi: 10.1039/C6CS00776G
|
[3] |
D. Kundu, E. Talaie, V. Duffort, et al., The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54 (2015) 3431–3448. doi: 10.1002/anie.201410376
|
[4] |
Y. Lu, L. Yu, X.W.D. Lou, et al., Nanostructured conversion-type anode materials for advanced lithium-ion batteries, Inside Chem. 4 (2018) 972–996. https://www.cell.com/chem/pdf/S2451-9294(18)30025-1.pdf
|
[5] |
G. Chang, Y. Zhao, L. Dong, et al., A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries, J. Mater. Chem. A 8 (2020) 4996–5048. doi: 10.1039/C9TA12169B
|
[6] |
J. Liu, S. Wang, K. Kravchyk, et al., SnP nanocrystals as anode materials for Na-ion batteries, J. Mater. Chem. A 6 (2018) 10958–10966. doi: 10.1039/C8TA01492B
|
[7] |
Y. Kim, H. Hwang, C.S. Yoon, et al., Reversible lithium intercalation in teardropshaped ultrafine SnP0.94 particles: an anode material for lithium-ion batteries, Adv. Mater. 19 (2007) 92–96. doi: 10.1002/adma.200600644
|
[8] |
J. Liu, M. Yao, A. Wu, et al., Inverse capacity growth and progressive lithiation of SnP-semifilled carbon nanotubes anodes, Appl. Surf. Sci. 568 (2021) 150844. doi: 10.1016/j.apsusc.2021.150844
|
[9] |
X. Zhao, W. Wang, Z. Hou, et al., SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode, Chem. Eng. J. 370 (2019) 677–683. doi: 10.1016/j.cej.2019.03.250
|
[10] |
C. Tsai, C. Chang, T. Kao, et al., Shape matters: SnP0.94 teardrop nanorods with boosted performance for potassium ion storage, Chem. Eng. J. 417 (2021) 128552. doi: 10.1016/j.cej.2021.128552
|
[11] |
M. Wang, G. Weng, G. Yasin, et al., A high-performance tin phosphide/carbon composite anode for lithium-ion batteries, Dalton Trans. 49 (2020) 17026–17032. doi: 10.1039/D0DT03139A
|
[12] |
M. Zhang, H. Wang, J. Feng, et al., Controllable synthesis of 3D nitrogen-doped carbon networks supported SnxPy nanoparticles as high-performance anode for lithium ion batteries, Appl. Surf. Sci. 484 (2019) 899–905. doi: 10.1016/j.apsusc.2019.04.161
|
[13] |
K. Ma, H. Jiang, Y. Hu, et al., 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries, Adv. Funct. Mater. 28 (2018) 1804306. doi: 10.1002/adfm.201804306
|
[14] |
M.R. Lukatskaya, S. Kota, Z. Lin, et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy 2 (2017) 1–6. https://www.nature.com/articles/nenergy2017105
|
[15] |
M. Naguib, M. Kurtoglu, V. Presser, et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. doi: 10.1002/adma.201102306
|
[16] |
M. Shang, X. Chen, B. Li, et al., A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 Mxene matrix as anode, ACS Nano 14 (2020) 3678–3686. doi: 10.1021/acsnano.0c00556
|
[17] |
J. Li, L. Han, Y. Li, et al., MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries, Chem. Eng. J. 380 (2020) 122590. doi: 10.1016/j.cej.2019.122590
|
[18] |
J. Ai, Y. Lei, S. Yang, et al., SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries, Chem. Eng. J. 357 (2019) 150–158. doi: 10.1016/j.cej.2018.09.109
|
[19] |
S. Supothina, R. Rattanakam, S. Vichaphund, et al., Effect of synthesis condition on morphology and yield of hydrothermally grown SnO2 nanorod clusters, J. Eur. Ceram. Soc. 31 (2011) 2453–2458. doi: 10.1016/j.jeurceramsoc.2011.02.018
|
[20] |
Y. Xia, S. Han, Y. Zhu, et al., Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries, Energy Storage Mater. 18 (2019) 125–132. doi: 10.1016/j.ensm.2019.01.021
|
[21] |
L. Ran, B. Luo, I.R. Gentle, et al., Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries, ACS Nano 14 (2020) 8826–8837. doi: 10.1021/acsnano.0c03432
|
[22] |
B. Li, S. Shang, J. Zhao, et al., Metastable trigonal SnP: a promising anode material for potassium-ion battery, Carbon 168 (2020) 468–474. doi: 10.1016/j.carbon.2020.03.048
|
[23] |
D. Zuo, S. Song, C. An, et al., Synthesis of sandwich-like structured Sn/SnOx@Mxene composite through in-situ growth for highly reversible lithium storage, Nano Energy 62 (2019) 401–409. doi: 10.1016/j.nanoen.2019.05.062
|
[24] |
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx Mxene, Chem. Mater. 32 (2020) 3480–3488. doi: 10.1021/acs.chemmater.0c00359
|
[25] |
S.O. Kucheyev, T. Van Buuren, T.F. Baumann, et al., Electronic structure of titania aerogels from soft x-ray absorption spectroscopy, Phys. Rev. B 69 (2004) 245102. doi: 10.1103/PhysRevB.69.245102
|
[26] |
Y.T. Liu, P. Zhang, N. Sun, et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage, Adv. Mater. 30 (2018) 1707334. doi: 10.1002/adma.201707334
|
[27] |
J.V. Zaikina, K.A. Kovnir, A.N. Sobolev, et al., Highly disordered crystal structure and thermoelectric properties of Sn3P4, Chem. Mater. 20 (2008) 2476–2483. doi: 10.1021/cm702655g
|
[28] |
L. Häggström, J. Gullman, T. Ericsson, et al., Mössbauer study of tin phosphides, J. Solid State Chem. 13 (1975) 204–207. doi: 10.1016/0022-4596(75)90120-6
|
[29] |
E. Pan, Y. Jin, C. Zhao, et al., Dopamine-derived N-doped carbon encapsulating hollow Sn4P3 microspheres as anode materials with superior sodium storage performance, J. Alloys Compd. 769 (2018) 45–52. doi: 10.1016/j.jallcom.2018.07.361
|
[30] |
J. Luo, X. Tao, J. Zhang, et al., Sn4+ ion decorated highly conductive Ti3C2 Mxene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance, ACS Nano 10 (2016) 2491–2499. doi: 10.1021/acsnano.5b07333
|
[31] |
S. Zhang, H. Ying, B. Yuan, et al., Partial atomic tin nanocomplex pillared fewlayered Ti3C2Tx MXenes for superior lithium-ion storage, Nano-Micro Lett. 12 (2020) 1–14. doi: 10.1007/s40820-019-0337-2
|
[32] |
C. Wang, S. Chen, H. Xie, et al., Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage, Adv. Energy Mater. 9 (2019) 1802977. doi: 10.1002/aenm.201802977
|
[33] |
C. Xuan, J. Wang, W. Xia, et al., Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A 6 (2018) 7062–7069. doi: 10.1039/C8TA00410B
|
[34] |
J. Qian, Y. Xiong, Y. Cao, et al., Synergistic Na-storage reactions in Sn4P3 as a highcapacity, cycle-stable anode of Na-ion batteries, Nano Lett. 14 (2014) 1865–1869. doi: 10.1021/nl404637q
|
[35] |
V. Augustyn, J. Come, M.A. Lowe, et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater. 12 (2013) 518. doi: 10.1038/nmat3601
|
[36] |
V. Augustyn, P. Simon, B. Dunn, et al., Pseudocapacitive oxide materials for highrate electrochemical energy storage, Energy Environ. Sci. 7 (2014) 1597–1614. doi: 10.1039/c3ee44164d
|
[37] |
J. Zhou, X. Lian, Y. You, et al., Revealing the various electrochemical behaviors of Sn4P3 binary alloy anodes in alkali metal ion batteries, Adv. Funct. Mater. (2021) 2102047.
|
[38] |
Y. Xu, Y. Zhu, Y. Liu, et al., Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries, Adv. Energy Mater. 3 (2013) 128–133. doi: 10.1002/aenm.201200346
|
[39] |
H. Lindström, S. Södergren, A. Solbrand, et al., Li+ ion insertion in TiO2 (anatase) Voltammetry on nanoporous films, J. Phys. Chem. B 101 (1997) 7717–7722. doi: 10.1021/jp970490q
|
[40] |
J. Wang, J. Polleux, J. Lim, et al., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C 111 (2007) 14925–14931. doi: 10.1021/jp074464w
|
[41] |
Y. Zhang, Y. Tang, J. Deng, et al., Correlating the Peukert's constant with phase composition of electrode materials in fast lithiation processes, ACS Mater. Lett. 1 (2019) 519–525. doi: 10.1021/acsmaterialslett.9b00320
|
[42] |
S.H. Yang, S. Park, Y.C. Kang, et al., Mof-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries, Nano-Micro Lett. 13 (2021) 1–15. doi: 10.1007/s40820-020-00525-y
|
[43] |
Y. Wang, C. Wu, Z. Wu, et al., FeP nanorod arrays on carbon cloth: a highperformance anode for sodium-ion batteries, Chem. Commun. 54 (2018) 9341–9344. doi: 10.1039/C8CC03827A
|
[44] |
S. Huang, C. Meng, M. Xiao, et al., Pseudocapacitive sodium storage by ferroelectric Sn2P2S6 with layered nanostructure, Small 14 (2018) 1704367. doi: 10.1002/smll.201704367
|
[45] |
Y. Noguchi, E. Kobayashi, L.S. Plashnitsa, et al., Fabrication and performances of all solid-state symmetric sodium battery based on Nasicon-related compounds, Electrochim. Acta 101 (2013) 59–65. doi: 10.1016/j.electacta.2012.11.038
|