Citation: | Xiao Xinxin. The direct use of enzymatic biofuel cells as functional bioelectronics[J]. eScience, 2022, 2(1): 1-9. doi: 10.1016/j.esci.2021.12.005 |
[1] |
S. Calabrese Barton, J. Gallaway, P. Atanassov, Enzymatic Biofuel Cells for Implantable and Microscale Devices, Chem. Rev. 104 (2004) 4867-4886 doi: 10.1021/cr020719k
|
[2] |
X. Xiao, H.-q. Xia, R. Wu, L. Bai, L. Yan, E. Magner, S. Cosnier, E. Lojou, Z. Zhu, A. Liu, Tackling the Challenges of Enzymatic (Bio)Fuel Cells, Chem. Rev. 119 (2019) 9509-9558 doi: 10.1021/acs.chemrev.9b00115
|
[3] |
J. Tang, R. M. L. Werchmeister, L. Preda, W. Huang, Z. Zheng, S. Leimkuhler, U. Wollenberger, X. Xiao, C. Engelbrekt, J. Ulstrup, J. Zhang, Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O2 Biofuel Cells, ACS Catal. 9 (2019) 6543-6554 doi: 10.1021/acscatal.9b01715
|
[4] |
A. T. Yahiro, S. M. Lee, D. O. Kimble, Bioelectrochemistry: I. Enzyme Utilizing Bio-Fuel Cell Studies, Biochim. Biophys. Acta 88 (1964) 375-383
|
[5] |
S. Shleev, Quo Vadis, Implanted Fuel Cell?, ChemPlusChem 82 (2017) 522-539 doi: 10.1002/cplu.201600536
|
[6] |
N. Mano, F. Mao, A. Heller, Characteristics of a Miniature Compartment-less Glucose−O2 Biofuel Cell and Its Operation in a Living Plant, J. Am. Chem. Soc. 125 (2003) 6588-6594 doi: 10.1021/ja0346328
|
[7] |
A. Heller, Miniature biofuel cells, Phys. Chem. Chem. Phys. 6 (2004) 209-216 doi: 10.1039/b313149a
|
[8] |
P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathe, P. Porcu, S. Cosnier, A Glucose Biofuel Cell Implanted in Rats, plos one 5 (2010) e10476 doi: 10.1371/journal.pone.0010476
|
[9] |
W. Jia, G. Valdes-Ramirez, A. J. Bandodkar, J. R. Windmiller, J. Wang, Epidermal Biofuel Cells: Energy Harvesting from Human Perspiration, Angew. Chem. Int. Ed. 52 (2013) 7233-7236 doi: 10.1002/anie.201302922
|
[10] |
X. Xiao, T. Siepenkoetter, P. O. Conghaile, D. Leech, E. Magner, Nanoporous Gold-Based Biofuel Cells on Contact Lenses, ACS. Appl. Mater. Interfaces 10 (2018) 7107-7116 doi: 10.1021/acsami.7b18708
|
[11] |
J. Kim, I. Jeerapan, J. R. Sempionatto, A. Barfidokht, R. K. Mishra, A. S. Campbell, L. J. Hubble, J. Wang, Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices, Acc. Chem. Res. 51 (2018) 2820-2828 doi: 10.1021/acs.accounts.8b00451
|
[12] |
L. Yin, J.-M. Moon, J. R. Sempionatto, M. Lin, M. Cao, A. Trifonov, F. Zhang, Z. Lou, J.-M. Jeong, S.-J. Lee, S. Xu, J. Wang, A passive perspiration biofuel cell: High energy return on investment, Joule 5 (2021) 1888-1904 doi: 10.1016/j.joule.2021.06.004
|
[13] |
M. Gamella, A. Koushanpour, E. Katz, Biofuel Cells-Activation of Micro- and Macro-Electronic Devices, Bioelectrochem. 119 (2018) 33-42 doi: 10.1016/j.bioelechem.2017.09.002
|
[14] |
H. G. Mond, M. Villafana, Celebrating 50 years of the lithium power source for cardiac pacemakers, Heart Rhythm 18 (2021) 491-492 doi: 10.1016/j.hrthm.2020.11.018
|
[15] |
K. MacVittie, J. Halamek, L. Halamkova, M. Southcott, W. D. Jemison, R. Lobel, E. Katz, From "Cyborg" Lobsters to a Pacemaker Powered by Implantable Biofuel Cells, Energy Environ. Sci. 6 (2013) 81-86 doi: 10.1039/C2EE23209J
|
[16] |
M. Southcott, K. MacVittie, J. Halamek, L. Halamkova, W. D. Jemison, R. Lobel, E. Katz, A Pacemaker Powered by an Implantable Biofuel Cell Operating under Conditions Mimicking the Human Blood Circulatory System - Battery Not Included, Phys. Chem. Chem. Phys. 15 (2013) 6278-6283 doi: 10.1039/c3cp50929j
|
[17] |
D. Lee, S. H. Jeong, S. Yun, S. Kim, J. Sung, J. Seo, S. Son, J. T. Kim, L. Susanti, Y. Jeong, S. Park, K. Seo, S. J. Kim, T. D. Chung, Totally implantable enzymatic biofuel cell and brain stimulator operating in bird through wireless communication, Biosens. Bioelectron. 171 (2021) 112746 doi: 10.1016/j.bios.2020.112746
|
[18] |
F. Conzuelo, A. Ruff, W. Schuhmann, Self-Powered Bioelectrochemical Devices, Curr Opin Electrochem. (2018) 156-163
|
[19] |
X. Xiao, P. O. Conghaile, D. Leech, R. Ludwig, E. Magner, A Symmetric Supercapacitor/Biofuel Cell Hybrid Device Based on Enzyme-Modified Nanoporous Gold: An Autonomous Pulse Generator, Biosens. Bioelectron. 90 (2017) 96-102 doi: 10.1016/j.bios.2016.11.012
|
[20] |
X. Xiao, E. Magner, A Quasi-Solid-State and Self-Powered Biosupercapacitor Based on Flexible Nanoporous Gold Electrodes, Chem. Commun. 54 (2018) 5823-5826 doi: 10.1039/C8CC02555J
|
[21] |
L. Wang, H. Shao, X. Lu, W. Wang, J.-R. Zhang, R.-B. Song, J.-J. Zhu, A glucose/O2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation, Chem. Sci. 9 (2018) 8482-8491 doi: 10.1039/c8sc04019b
|
[22] |
L. Wang, X. Wu, B. S. Q.-w. Su, R. Song, J.-R. Zhang, J.-J. Zhu, Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications, Adv. Energy Sustainability Res. 2 (2021) 2100031 doi: 10.1002/aesr.202100031
|
[23] |
A. J. Bandodkar, J. Wang, Wearable Biofuel Cells: A Review, Electroanalysis 28 (2016) 1188-1200 doi: 10.1002/elan.201600019
|
[24] |
E. Katz, K. MacVittie, Implanted Biofuel Cells Operating in vivo - Methods, Applications and Perspectives - Feature Article, Energy Environ. Sci. 6 (2013) 2791-2803 doi: 10.1039/c3ee42126k
|
[25] |
A. Zebda, J.-P. Alcaraz, P. Vadgama, S. Shleev, S. D. Minteer, F. Boucher, P. Cinquin, D. K. Martin, Challenges for Successful Implantation of Biofuel Cells, Bioelectrochem. 124 (2018) 57-72 doi: 10.1016/j.bioelechem.2018.05.011
|
[26] |
S. Cosnier, A. J. Gross, A. Le Goff, M. Holzinger, Recent Advances on Enzymatic Glucose/Oxygen and Hydrogen/Oxygen Biofuel Cells: Achievements and Limitations, J. Power Sources 325 (2016) 252-263 doi: 10.1016/j.jpowsour.2016.05.133
|
[27] |
R. A. Marcus, Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture), Angew. Chem. Int. Ed. 32 (1993) 1111-1121 doi: 10.1002/anie.199311113
|
[28] |
C. C. Page, C. C. Moser, X. Chen, P. L. Dutton, Natural Engineering Principles of Electron Tunnelling in Biological Oxidation-Reduction, Nature 402 (1999) 47-52 doi: 10.1038/46972
|
[29] |
Q. Chi, O. Farver, J. Ulstrup, Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance, Proc. Natl. Acad. Sci. 102 (2005) 16203 doi: 10.1073/pnas.0508257102
|
[30] |
X. Yan, J. Tang, D. Tanner, J. Ulstrup, X. Xiao, Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers, Catalysts 10 (2020) 1458 doi: 10.3390/catal10121458
|
[31] |
N. Mano, A. de Poulpiquet, O2 Reduction in Enzymatic Biofuel Cells, Chem. Rev. 118 (2017) 2392-2468
|
[32] |
P. N. Bartlett, F. A. Al-Lolage, There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene, J. Electroanal. Chem. 819 (2017) 26-37
|
[33] |
X. Xiao, X. Yan, E. Magner, J. Ulstrup, Polymer coating for improved redox-polymer-mediated enzyme electrodes: A mini-review, Electrochem. Commun. 124 (2021) 106931 doi: 10.1016/j.elecom.2021.106931
|
[34] |
A. Heller, Electron-Conducting Redox Hydrogels: Design, Characteristics and Synthesis, Curr. Opin. Chem. Biol. 10 (2006) 664-672 doi: 10.1016/j.cbpa.2006.09.018
|
[35] |
M. Yuan, S. D. Minteer, Redox polymers in electrochemical systems: From methods of mediation to energy storage, Curr. Opin. Electrochem. 15 (2019) 1-6 doi: 10.1504/ijceell.2019.10018934
|
[36] |
I. Mazurenko, V. P. Hitaishi, E. Lojou, Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis, Curr. Opin. Electrochem. 19 (2020) 113-121 doi: 10.1016/j.coelec.2019.11.004
|
[37] |
X. Yan, S. Ma, J. Tang, D. Tanner, J. Ulstrup, X. Xiao, J. Zhang, Direct electron transfer of fructose dehydrogenase immobilized on thiol-gold electrodes, Electrochim. Acta 392 (2021) 138946 doi: 10.1016/j.electacta.2021.138946
|
[38] |
J. Tang, X. Yan, W. Huang, C. Engelbrekt, J. OE. Duus, J. Ulstrup, X. Xiao, J. Zhang, Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode, Biosens. Bioelectron. 167 (2020) 112500 doi: 10.1016/j.bios.2020.112500
|
[39] |
I. Mazurenko, K. Monsalve, J. Rouhana, P. Parent, C. Laffon, A. L. Goff, S. Szunerits, R. Boukherroub, M.-T. Giudici-Orticoni, N. Mano, E. Lojou, How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction, ACS Appl. Mater. Interfaces 8 (2016) 23074-23085 doi: 10.1021/acsami.6b07355
|
[40] |
A. J. Gross, M. Holzinger, S. Cosnier, Buckypaper Bioelectrodes: Emerging Materials for Implantable and Wearable Biofuel Cells, Energy Environ. Sci. 11 (2018) 1670-1687 doi: 10.1039/C8EE00330K
|
[41] |
F. Shen, D. Pankratov, A. Halder, X. Xiao, M. D. Toscano, J. Zhang, J. Ulstrup, L. Gorton, Q. Chi, Two-dimensional graphene paper supported flexible enzymatic fuel cells, Nanoscale Adv. 1 (2019) 2562-2570 doi: 10.1039/C9NA00178F
|
[42] |
J. Tang, X. Yan, C. Engelbrekt, J. Ulstrup, E. Magner, X. Xiao, J. Zhang, Development of graphene-based enzymatic biofuel cells: A minireview, Bioelectrochemistry 134 (2020) 107537 doi: 10.1016/j.bioelechem.2020.107537
|
[43] |
C. Gutierrez-Sanchez, M. Pita, C. Vaz-Dominguez, S. Shleev, A. L. De Lacey, Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes, J. Am. Chem. Soc. 134 (2012) 17212-17220 doi: 10.1021/ja307308j
|
[44] |
X. Xiao, P. Si, E. Magner, An Overview of Dealloyed Nanoporous Gold in Bioelectrochemistry, Bioelectrochem. 109 (2016) 117-126 doi: 10.1016/j.bioelechem.2015.12.008
|
[45] |
M. J. Moehlenbrock, R. L. Arechederra, K. H. Sjoholm, S. D. Minteer, Analytical Techniques for Characterizing Enzymatic Biofuel Cells, Anal. Chem. 81 (2009) 9538-9545 doi: 10.1021/ac901243s
|
[46] |
X. Xiao, E. Magner, A Biofuel Cell in Non-Aqueous Solution, Chem. Commun. 51 (2015) 13478-13480 doi: 10.1039/C5CC04888E
|
[47] |
F. Mao, N. Mano, A. Heller, Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme “Wiring” Hydrogels, J. Am. Chem. Soc. 125 (2003) 4951-4957 doi: 10.1021/ja029510e
|
[48] |
E. Katz, A. F. Buckmann, I. Willner, Self-Powered Enzyme-Based Biosensors, J. Am. Chem. Soc. 123 (2001) 10752-10753 doi: 10.1021/ja0167102
|
[49] |
M. Grattieri, S. D. Minteer, Self-Powered Biosensors, ACS Sens. 3 (2018) 44-53 doi: 10.1021/acssensors.7b00818
|
[50] |
Y. Chen, W. Ji, K. Yan, J. Gao, J. Zhang, Fuel cell-based self-powered electrochemical sensors for biochemical detection, Nano Energy 61 (2019) 173-193 doi: 10.1016/j.nanoen.2019.04.056
|
[51] |
P.-P. Gai, Y.-S. Ji, W.-J. Wang, R.-B. Song, C. Zhu, Y. Chen, J.-R. Zhang, J.-J. Zhu, Ultrasensitive self-powered cytosensor, Nano Energy 19 (2016) 541-549 doi: 10.1016/j.nanoen.2015.03.035
|
[52] |
H. Liu, R. M. Crooks, Paper-Based Electrochemical Sensing Platform with Integral Battery and Electrochromic Read-Out, Anal. Chem. 84 (2012) 2528-2532 doi: 10.1021/ac203457h
|
[53] |
A. Zloczewska, A. Celebanska, K. Szot, D. Tomaszewska, M. Opallo, M. Jonsson-Niedziolka, Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display, Biosens. Bioelectron. 54 (2014) 455-461 doi: 10.1016/j.bios.2013.11.033
|
[54] |
M. A. Pellitero, A. Guimera, M. Kitsara, R. Villa, C. Rubio, B. Lakard, M.-L. Doche, J.-Y. Hihn, F. Javier del Campo, Quantitative self-powered electrochromic biosensors, Chem. Sci. 8 (2017) 1995-2002 doi: 10.1039/C6SC04469G
|
[55] |
X. Zhang, L. Zhang, Q. Zhai, W. Gu, J. Li, E. Wang, Self-Powered Bipolar Electrochromic Electrode Arrays for Direct Displaying Applications, Anal. Chem. 88 (2016) 2543-2547 doi: 10.1021/acs.analchem.6b00054
|
[56] |
H. Kai, W. Suda, S. Yoshida, M. Nishizawa, Organic electrochromic timer for enzymatic skin patches, Biosens. Bioelectron. 123 (2019) 108-113 doi: 10.1016/j.bios.2018.07.013
|
[57] |
T. Hanashi, T. Yamazaki, W. Tsugawa, S. Ferri, D. Nakayama, M. Tomiyama, K. Ikebukuro, K. Sode, BioCapacitor-A Novel Category of Biosensor, Biosens. Bioelectron. 24 (2009) 1837-1842 doi: 10.1016/j.bios.2008.09.014
|
[58] |
J. Lv, L. Yin, X. Chen, I. Jeerapan, C. A. Silva, Y. Li, M. Le, Z. Lin, L. Wang, A. Trifonov, S. Xu, S. Cosnier, J. Wang, Wearable Biosupercapacitor: Harvesting and Storing Energy from Sweat, Adv. Funct. Mater. 31 (2021) 2102915 doi: 10.1002/adfm.202102915
|
[59] |
L. Zhang, M. Zhou, S. Dong, A Self-Powered Acetaldehyde Sensor Based on Biofuel Cell, Anal. Chem. 84 (2012) 10345-10349 doi: 10.1021/ac302414a
|
[60] |
D. Wen, L. Deng, S. Guo, S. Dong, Self-Powered Sensor for Trace Hg2+ Detection, Anal. Chem. 83 (2011) 3968-3972 doi: 10.1021/ac2001884
|
[61] |
L. Deng, C. Chen, M. Zhou, S. Guo, E. Wang, S. Dong, Integrated Self-Powered Microchip Biosensor for Endogenous Biological Cyanide, Anal. Chem. 82 (2010) 4283-4287 doi: 10.1021/ac100274s
|
[62] |
M. T. Meredith, S. D. Minteer, Inhibition and Activation of Glucose Oxidase Bioanodes for Use in a Self-Powered EDTA Sensor, Anal. Chem. 83 (2011) 5436-5441 doi: 10.1021/ac2011087
|
[63] |
Y. Wang, L. Ge, P. Wang, M. Yan, J. Yu, S. Ge, A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing, Chem. Commun. 50 (2014) 1947-1949 doi: 10.1039/c3cc47731b
|
[64] |
C. Gu, X. Kong, X. Liu, P. Gai, F. Li, Enzymatic Biofuel-Cell-Based Self-Powered Biosensor Integrated with DNA Amplification Strategy for Ultrasensitive Detection of Single-Nucleotide Polymorphism, Anal. Chem. 91 (2019) 8697-8704 doi: 10.1021/acs.analchem.9b02510
|
[65] |
C. Gu, L. Bai, L. Pu, P. Gai, F. Li, Highly sensitive and stable self-powered biosensing for exosomes based on dual metal-organic frameworks nanocarriers, Biosens. Bioelectron. 176 (2021) 112907 doi: 10.1016/j.bios.2020.112907
|
[66] |
V. S. Mallela, V. Ilankumaran, N. Rao, Trends in Cardiac Pacemaker Batteries, Indian Pacing Electrophys. J. 4 (2004) 201-212
|
[67] |
C. Agnes, M. Holzinger, A. Le Goff, B. Reuillard, K. Elouarzaki, S. Tingry, S. Cosnier, Supercapacitor/Biofuel Cell Hybrids Based on Wired Enzymes on Carbon Nanotube Matrices: Autonomous Reloading after High Power Pulses in Neutral Buffered Glucose Solutions, Energy Environ. Sci. 7 (2014) 1884-1888 doi: 10.1039/C3EE43986K
|
[68] |
D. Pankratov, Z. Blum, D. B. Suyatin, V. O. Popov, S. Shleev, Self-Charging Electrochemical Biocapacitor, ChemElectroChem 1 (2014) 343-346 doi: 10.1002/celc.201300142
|
[69] |
F. Shen, D. Pankratov, G. Pankratova, M. D. Toscano, J. Zhang, J. Ulstrup, Q. Chi, L. Gorton, Supercapacitor/Biofuel Cell Hybrid Device Employing Biomolecules for Energy Conversion and Charge Storage, Bioelectrochem. 128 (2019) 94-99 doi: 10.1016/j.bioelechem.2019.03.009
|
[70] |
D. Pankratov, F. Conzuelo, P. Pinyou, S. Alsaoub, W. Schuhmann, S. Shleev, A Nernstian Biosupercapacitor, Angew. Chem. Int. Ed. 55 (2016) 15434-15438 doi: 10.1002/anie.201607144
|
[71] |
M. Kizling, S. Draminska, K. Stolarczyk, P. Tammela, Z. Wang, L. Nyholm, R. Bilewicz, Biosupercapacitors for powering oxygen sensing devices, Bioelectrochem. 106, Part A (2015) 34-40
|
[72] |
K. L. Knoche, D. P. Hickey, R. D. Milton, C. L. Curchoe, S. D. Minteer, Hybrid Glucose/O2 Biobattery and Supercapacitor Utilizing a Pseudocapacitive Dimethylferrocene Redox Polymer at the Bioanode, ACS Energy Lett. 1 (2016) 380-385 doi: 10.1021/acsenergylett.6b00225
|
[73] |
Y. Lee, V. K. Bandari, Z. Li, M. Medina-Sanchez, M. F. Maitz, D. Karnaushenko, M. V. Tsurkan, D. D. Karnaushenko, O. G. Schmidt, Nano-biosupercapacitors enable autarkic sensor operation in blood, Nat. Commun. 12 (2021) 4967 doi: 10.1038/s41467-021-24863-6
|
[74] |
H. Kai, T. Yamauchi, Y. Ogawa, A. Tsubota, T. Magome, T. Miyake, K. Yamasaki, M. Nishizawa, Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster, Adv. Healthc. Mater. 6 (2017) 1700465 doi: 10.1002/adhm.201700465
|
[75] |
S. Kusama, K. Sato, Y. Matsui, N. Kimura, H. Abe, S. Yoshida, M. Nishizawa, Transdermal electroosmotic flow generated by a porous microneedle array patch, Nat. Commun. 12 (2021) 658 doi: 10.1038/s41467-021-20948-4
|
[76] |
S.-J. Park, K.-H. Kim, W.-Y. Jeon, J. Seo, J.-M. Han, J.-S. Kim, H.-M. Chung, J.-H. Lee, S.-H. Moon, H.-H. Kim, Enzyme catalyzed electrostimulation of human embryonic stem cell-derived cardiomyocytes influence contractility and synchronization, Biochem. Eng. J. 123 (2017) 95-109 doi: 10.1016/j.bej.2017.03.013
|
[77] |
W.-Y. Jeon, J.-H. Lee, K. Dashnyam, Y.-B. Choi, T.-H. Kim, H.-H. Lee, H.-W. Kim, H.-H. Kim, Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications, Sci. Rep. 9 (2019) 10872 doi: 10.1038/s41598-019-47392-1
|
[78] |
M. Zhou, N. Zhou, F. Kuralay, J. R. Windmiller, S. Parkhomovsky, G. Valdes-Ramirez, E. Katz, J. Wang, A Self-Powered “Sense-Act-Treat” System that is Based on a Biofuel Cell and Controlled by Boolean Logic, Angew. Chem. Int. Ed. 51 (2012) 2686-2689 doi: 10.1002/anie.201107068
|
[79] |
S. Mailloux, J. Halamek, L. Halamkova, A. Tokarev, S. Minko, E. Katz, Biomolecular Release Triggered by Glucose Input-Bioelectronic Coupling of Sensing and Actuating Systems, Chem. Commun. 49 (2013) 4755-4757 doi: 10.1039/c3cc42027b
|
[80] |
S. Mailloux, J. Halamek, E. Katz, A Model System for Targeted Drug Release Triggered by Biomolecular Signals Logically Processed through Enzyme Logic Networks, Analyst 139 (2014) 982-986 doi: 10.1039/c3an02162a
|
[81] |
A. V. Okhokhonin, S. Domanskyi, Y. Filipov, M. Gamella, A. N. Kozitsina, V. Privman, E. Katz, Biomolecular release from alginate-modified electrode triggered by chemical inputs processed through a biocatalytic cascade - integration of biomolecular computing and actuation, Electroanalysis 30 (2017) 426-435
|
[82] |
P. Bollella, V. K. Kadambar, A. Melman, E. Katz, Reconfigurable Implication and Inhibition Boolean logic gates based on NAD+-dependent enzymes: Application to signal-controlled biofuel cells and molecule release, Electrochem. Sci. Adv. n/a (2021) e2100008
|
[83] |
P. Gai, C. Gu, X. Kong, F. Li, Anode-Driven Controlled Release of Cathodic Fuel via pH Response for Smart Enzymatic Biofuel Cell, iScience 23 (2020) 101133 doi: 10.1016/j.isci.2020.101133
|
[84] |
Y. Ogawa, K. Kato, T. Miyake, K. Nagamine, T. Ofuji, S. Yoshino, M. Nishizawa, Organic Transdermal Iontophoresis Patch with Built-in Biofuel Cell, Adv. Healthc. Mater. 4 (2015) 506-510 doi: 10.1002/adhm.201400457
|
[85] |
X. Xiao, K. Denis McGourty, E. Magner, Enzymatic Biofuel Cells for Self-Powered, Controlled Drug Release, J. Am. Chem. Soc. 142 (2020) 11602-11609 doi: 10.1021/jacs.0c05749
|
[86] |
X. Xiao, M. P. Ryan, D. Leech, J. Zhang, E. Magner, Antimicrobial enzymatic biofuel cells, Chem. Commun. 56 (2020) 15589-15592 doi: 10.1039/d0cc07472a
|
[87] |
M. J. Kim, H. W. Shin, S. J. Lee, A novel self-powered time-temperature integrator (TTI) using modified biofuel cell for food quality monitoring, Food Control 70 (2016) 167-173 doi: 10.17207/jstc.2016.12.19.4.167
|
[88] |
F. Mashayekhi Mazar, J. G. Martinez, M. Tyagi, M. Alijanianzadeh, A. P. F. Turner, E. W. H. Jager, Artificial Muscles Powered by Glucose, Adv. Mater. 31 (2019) 1901677 doi: 10.1002/adma.201901677
|
[89] |
S. Kusama, K. Sato, S. Yoshida, M. Nishizawa, Self-Moisturizing Smart Contact Lens Employing Electroosmosis, Adv. Mater. Techno.l 5 (2020) 1900889 doi: 10.1002/admt.201900889
|