Citation: | Li Xiang, Zhao Ruxin, Fu Yongzhu, Manthiram Arumugam. Nitrate additives for lithium batteries: Mechanisms, applications, and prospects[J]. eScience, 2021, 1(2): 108-123. doi: 10.1016/j.esci.2021.12.006 |
[1] |
J. Liu, Z. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy 4 (2019) 180–186. doi: 10.1038/s41560-019-0338-x
|
[2] |
D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol. 12 (2017) 194–206. doi: 10.1038/nnano.2017.16
|
[3] |
Y.F. Ye, M.K. Song, Y. Xu, et al., Lithium nitrate: a double-edged sword in the rechargeable lithium-sulfur cell, Energy Storage Mater. 16 (2019) 498–504. doi: 10.1016/j.ensm.2018.09.022
|
[4] |
M. Baek, H. Shin, K. Char, et al., New high donor electrolyte for lithium-sulfur batteries, Adv. Mater. 32 (2020) 2005022. doi: 10.1002/adma.202005022
|
[5] |
X.Q. Zhang, X. Chen, X.B. Cheng, et al., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes, Angew. Chem. Int. Ed. 57 (2018) 5301–5305. doi: 10.1002/anie.201801513
|
[6] |
W. Zhang, Q. Wu, J. Huang, et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries, Adv. Mater. 32 (2020) 2001740. doi: 10.1002/adma.202001740
|
[7] |
S. Liu, X. Ji, N. Piao, et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes, Angew. Chem. Int. Ed. 60 (2021) 3661–3671. doi: 10.1002/anie.202012005
|
[8] |
R. Zhao, X. Li, Y. Si, et al., Cu(NO3)2 as efficient electrolyte additive for 4 V class Li metal batteries with ultrahigh stability, Energy Storage Mater. 37 (2021) 1–7. doi: 10.1016/j.ensm.2021.01.030
|
[9] |
X. Li, S. Guo, H. Deng, et al., An ultrafast rechargeable lithium metal battery, J. Mater. Chem. A 6 (2018) 15517–15522. doi: 10.1039/C8TA05354E
|
[10] |
A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res. 46 (2013) 1125–1134. doi: 10.1021/ar300179v
|
[11] |
W.J. Chen, B.Q. Li, C.X. Zhao, et al., Electrolyte regulation towards stable lithiummetal anodes in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes, Angew. Chem. Int. Ed. 59 (2020) 10732–10745. doi: 10.1002/anie.201912701
|
[12] |
Y.V. Mikhaylik, U. S. Pat 7 (2008) 680.
|
[13] |
D. Aurbach, E. Pollak, R. Elazari, et al., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries, J. Electrochem. Soc. 156 (2009) A694–A702. doi: 10.1149/1.3148721
|
[14] |
S.Z. Xiong, K. Xie, Y. Diao, et al., Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries, Electrochim. Acta 83 (2012) 78–86. doi: 10.1016/j.electacta.2012.07.118
|
[15] |
M. Ebadi, M.J. Lacey, D. Brandell, et al., Density functional theory modeling the interfacial chemistry of the LiNO3 additive for lithium-sulfur batteries by means of simulated photoelectron spectroscopy, J. Phys. Chem. C 121 (2017) 23324–23332. doi: 10.1021/acs.jpcc.7b07847
|
[16] |
G.Q. Ma, Z.Y. Wen, M.F. Wu, et al., A lithium anode protection guided highlystable lithium-sulfur battery, Chem. Commun. 50 (2014) 14209–14212. doi: 10.1039/C4CC05535G
|
[17] |
R. May, K.J. Fritzsching, D. Livitz, et al., Rapid interfacial exchange of Li ions dictates high coulombic efficiency in Li metal anodes, ACS Energy Lett. 6 (2021) 1162–1169.
|
[18] |
B.A. Boukamp, R.A. Huggins, Fast ionic conductivity in lithium nitride, Mater. Res. Bull. 13 (1978) 23–32. doi: 10.1016/0025-5408(78)90023-5
|
[19] |
B. Wang, B.S. Kwak, B.C. Sales, et al., Ionic conductivities and structure of lithium phosphorus oxynitride glasses, J. Non-Cryst. Solids 183 (1995) 297–306. doi: 10.1016/0022-3093(94)00665-2
|
[20] |
A. Jozwiuk, B.B. Berkes, T. Weiss, et al., The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries, Energy Environ. Sci. 9 (2016) 2603–2608. doi: 10.1039/C6EE00789A
|
[21] |
Y. Liu, D. Lin, Y. Li, et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nat. Commun. 9 (2018) 3656. doi: 10.1038/s41467-018-06077-5
|
[22] |
W. Zhang, Z. Shen, S. Li, et al., Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries, Adv. Funct. Mater. 30 (2020) 2003800. doi: 10.1002/adfm.202003800
|
[23] |
S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery, Electrochim. Acta 70 (2012) 344–348. doi: 10.1016/j.electacta.2012.03.081
|
[24] |
S.S. Zhang, Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte, J. Electrochem. Soc. 159 (2012) A920–A923. doi: 10.1149/2.002207jes
|
[25] |
A. Rosenman, R. Elazari, G. Salitra, et al., The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li–S battery systems, J. Electrochem. Soc. 162 (2015) A470–A473. doi: 10.1149/2.0861503jes
|
[26] |
F. Qiu, X. Li, H. Deng, et al., A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li, Adv. Energy Mater. 9 (2019) 1803372. doi: 10.1002/aenm.201803372
|
[27] |
S.J. Tan, J. Yue, X.C. Hu, et al., Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 7802–7807. doi: 10.1002/anie.201903466
|
[28] |
S.Y. Lang, Z.Z. Shen, X.C. Hu, et al., Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode, Nano Energy 75 (2020) 104967. doi: 10.1016/j.nanoen.2020.104967
|
[29] |
S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, et al., Insight into the effect of additives widely used in lithium-sulfur batteries, Chem. Commun. 55 (2019) 13951–13954. doi: 10.1039/C9CC06504K
|
[30] |
S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, et al., The protection of lithium metal enabled by LiNO3 for lithium-sulfur batteries, ECS Trans. 97 (2020) 827–834. doi: 10.1149/09707.0827ecst
|
[31] |
N. Ding, L. Zhou, C.W. Zhou, et al., Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst, Sci. Rep. 6 (2016) 33154. doi: 10.1038/srep33154
|
[32] |
R. Xu, J.C.M. Li, J. Lu, et al., Demonstration of highly efficient lithium-sulfur batteries, J. Mater. Chem. A 3 (2015) 4170–4179. doi: 10.1039/C4TA06641C
|
[33] |
S.S. Zhang, J.A. Read, A new direction for the performance improvement of rechargeable lithium/sulfur batteries, J. Power Sources 200 (2012) 77–82. doi: 10.1016/j.jpowsour.2011.10.076
|
[34] |
S.S. Zhang, New insight into liquid electrolyte of rechargeable lithium/sulfur battery, Electrochim. Acta 97 (2013) 226–230. doi: 10.1016/j.electacta.2013.02.122
|
[35] |
X. Liang, Z.Y. Wen, Y. Liu, et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, J. Power Sources 196 (2011) 9839–9843. doi: 10.1016/j.jpowsour.2011.08.027
|
[36] |
L.H. Yu, J.J. Song, L.P. Wang, et al., An investigation on the relationship between the stability of lithium anode and lithium nitrate in electrolyte, J. Electrochem. Soc. 166 (2019) A3570–A3574. doi: 10.1149/2.0151915jes
|
[37] |
J. Shim, T.J. Ko, K. Yoo, Study for an effect of LiNO3 on polysulfide multistep reaction in Li/S battery, J. Ind. Eng. Chem. 80 (2019) 283–291. doi: 10.1016/j.jiec.2019.08.006
|
[38] |
S.Z. Xiong, K. Xie, Y. Diao, et al., On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries, J. Power Sources 236 (2013) 181–187. doi: 10.1016/j.jpowsour.2013.02.072
|
[39] |
S.Z. Xiong, K. Xie, Y. Diao, et al., Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithiumsulfur batteries, J. Power Sources 246 (2014) 840–845. doi: 10.1016/j.jpowsour.2013.08.041
|
[40] |
L. Zhang, M. Ling, J. Feng, et al., The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries, Energy Storage Mater. 11 (2018) 24–29. doi: 10.1016/j.ensm.2017.09.001
|
[41] |
W.Y. Li, H.B. Yao, K. Yan, et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun. 6 (2015) 7436. doi: 10.1038/ncomms8436
|
[42] |
C.Z. Zhao, X.B. Cheng, R. Zhang, et al., Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Mater. 3 (2016) 77–84. doi: 10.1016/j.ensm.2016.01.007
|
[43] |
Q. Zhao, Y.Y. Lu, Z.Q. Zhu, et al., Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode, Nano Lett. 15 (2015) 5982–5987. doi: 10.1021/acs.nanolett.5b02116
|
[44] |
V. Giordani, W. Walker, V.S. Bryantsev, et al., Synergistic effect of oxygen and LiNO3 on the interfacial stability of lithium metal in a Li/O2 battery, J. Electrochem. Soc. 160 (2013) A1544–A1550. doi: 10.1149/2.097309jes
|
[45] |
S.S. Zhang, A new finding on the role of LiNO3 in lithium-sulfur battery, J. Power Sources 322 (2016) 99–105. doi: 10.1016/j.jpowsour.2016.05.009
|
[46] |
X. Tang, D. Zhou, P. Li, et al., High-performance quasi-solid-state MXene-based LiI batteries, ACS Cent. Sci. 5 (2019) 365–373. doi: 10.1021/acscentsci.8b00921
|
[47] |
J. Uddin, V.S. Bryantsev, V. Giordani, et al., Lithium nitrate as regenerable SEI stabilizing agent for rechargeable Li/O2 batteries, J. Phys. Chem. Lett. 4 (2013) 3760–3765. doi: 10.1021/jz402025n
|
[48] |
J. Ming, Z. Cao, W. Wahyudi, et al., New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases, ACS Energy Lett. 3 (2018) 335–340. doi: 10.1021/acsenergylett.7b01177
|
[49] |
W. Wahyudi, V. Ladelta, L. Tsetseris, et al., Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries, Adv. Funct. Mater. 31 (2021) 2101593. doi: 10.1002/adfm.202101593
|
[50] |
J.L. Fu, X. Ji, J. Chen, et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries, Angew. Chem. Int. Ed. 59 (2020) 22194–22201. doi: 10.1002/anie.202009575
|
[51] |
S. Li, S. Fang, H. Dou, et al., RbF as a dendrite-inhibiting additive in lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 20804–20811. doi: 10.1021/acsami.9b03940
|
[52] |
F. Ding, W. Xu, G.L. Graff, et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc. 135 (2013) 4450–4456. doi: 10.1021/ja312241y
|
[53] |
Y.H. Zhang, J.F. Qian, W. Xu, et al., Dendrite-free lithium deposition with selfaligned nanorod structure, Nano Lett. 14 (2014) 6889–6896. doi: 10.1021/nl5039117
|
[54] |
S. Gu, S.W. Zhang, J. Han, et al., Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte, Adv. Funct. Mater. 31 (2021) 2102128. doi: 10.1002/adfm.202102128
|
[55] |
W. Jia, C. Fan, L. Wang, et al., Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery, ACS Appl. Mater. Interfaces 8 (2016) 15399–15405. doi: 10.1021/acsami.6b03897
|
[56] |
Q. Xu, Y. Yang, H. Shao, Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries, Electrochim. Acta 212 (2016) 758–766. doi: 10.1016/j.electacta.2016.07.080
|
[57] |
S.M. Wood, C.H. Pham, R. Rodriguez, et al., K+ reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase, ACS Energy Lett. 1 (2016) 414–419. doi: 10.1021/acsenergylett.6b00259
|
[58] |
Y. Shuai, Z. Zhang, K. Chen, et al., Highly stable lithium plating by a multifunctional electrolyte additive in a lithium-sulfurized polyacrylonitrile battery, Chem. Commun. 55 (2019) 2376–2379. doi: 10.1039/C8CC09372E
|
[59] |
N.A. Sahalie, A.A. Assegie, W.N. Su, et al., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources 437 (2019) 226912. doi: 10.1016/j.jpowsour.2019.226912
|
[60] |
T.A. Pham, K.E. Kweon, A. Samanta, et al., Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations, J. Phys. Chem. C 121 (2017) 21913–21920. doi: 10.1021/acs.jpcc.7b06457
|
[61] |
M. Okoshi, Y. Yamada, A. Yamada, et al., Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents, J. Electrochem. Soc. 160 (2013) A2160–A2165. doi: 10.1149/2.074311jes
|
[62] |
R. Zhao, X. Li, Y. Si, et al., Tuning solvation behavior of ester-based electrolytes toward highly stable lithium-metal batteries, ACS Appl. Mater. Interfaces 13 (2021) 40582–40589. doi: 10.1021/acsami.1c10279
|
[63] |
C. Yan, Y.X. Yao, X. Chen, et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 57 (2018) 14055–14059. doi: 10.1002/anie.201807034
|
[64] |
S.H. Lee, J.Y. Hwang, J. Ming, et al., Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry, Adv. Energy Mater. 10 (2020) 2000567. doi: 10.1002/aenm.202000567
|
[65] |
J.K.S. Goodman, P.A. Kohl, Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites, J. Electrochem. Soc. 161 (2014) D418–D424. doi: 10.1149/2.0301409jes
|
[66] |
C. Zu, A. Manthiram, Stabilized lithium–metal surface in a polysulfide-rich environment of lithium–sulfur batteries, J. Phys. Chem. Lett. 5 (2014) 2522–2527. doi: 10.1021/jz501352e
|
[67] |
S. Yoon, J. Lee, S.O. Kim, et al., Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte, Electrochim. Acta 53 (2008) 2501–2506. doi: 10.1016/j.electacta.2007.10.019
|
[68] |
L.N. Wu, J. Peng, F.M. Han, et al., Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition, J. Mater. Chem. 8 (2020) 4300–4307. doi: 10.1039/C9TA13644D
|
[69] |
T. Liu, H.J. Li, J.M. Yue, et al., Ultralight electrolyte for high-energy lithium-sulfur pouch cells, Angew. Chem. Int. Ed. 60 (2021) 17547–17555. doi: 10.1002/anie.202103303
|
[70] |
W. Walker, V. Giordani, J. Uddin, et al., A rechargeable Li-O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte, J. Am. Chem. Soc. 135 (2013) 2076–2079. doi: 10.1021/ja311518s
|
[71] |
Y. Hayashi, S. Yamada, T. Ishikawa, et al., Enhancement of bifunctional effect for LiNO3/glyme electrolyte by using dual solvent system for Li-O2 batteries, J. Electrochem. Soc. 167 (2020), 020542. doi: 10.1149/1945-7111/ab6975
|
[72] |
C.M. Burke, V. Pande, A. Khetan, et al., Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 9293–9298. doi: 10.1073/pnas.1505728112
|
[73] |
V. Giordani, D. Tozier, J. Uddin, et al., Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox, Nat. Chem. 11 (2019) 1133–1138. doi: 10.1038/s41557-019-0342-6
|
[74] |
L. Carbone, D. Di Lecce, M. Gobet, et al., Relevant features of a triethylene glycol dimethyl ether-based electrolyte for application in lithium battery, ACS Appl. Mater. Interfaces 9 (2017) 17086–17096.
|
[75] |
H. Jin, H.Y. Liu, H. Cheng, et al., The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode, J. Electroanal. Chem. 874 (2020) 114484. doi: 10.1016/j.jelechem.2020.114484
|
[76] |
S.Y. Wei, S. Inoue, D. Di Lecce, et al., Towards a high-performance lithium-metal battery with glyme solution and an olivine cathode, Chemelectrochem 7 (2020) 2376–2388. doi: 10.1002/celc.202000272
|
[77] |
Q. Zhao, X.T. Liu, J.X. Zheng, et al., Designing electrolytes with polymerlike glassforming properties and fast ion transport at low temperatures, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 26053–26060. doi: 10.1073/pnas.2004576117
|
[78] |
L. Zheng, F. Guo, T. Kang, et al., Stable lithium-carbon composite enabled by dualsalt additives, Nano-Micro Lett. 13 (2021) 111. doi: 10.1007/s40820-021-00633-3
|
[79] |
T.L. Zheng, J.W. Xiong, X.T. Shi, et al., Cocktail therapy towards high temperature/high voltage lithium metal battery via solvation sheath structure tuning, Energy Storage Mater. 38 (2021) 599–608. doi: 10.1016/j.ensm.2021.04.002
|
[80] |
R. Rodriguez, R.A. Edison, R.M. Stephens, et al., Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition, J. Mater. Chem. 8 (2020) 3999–4006. doi: 10.1039/C9TA10929C
|
[81] |
D.W. Kang, J. Moon, H.Y. Choi, et al., Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a highconcentration dual-salt electrolyte with high LiNO3 content, J. Power Sources 490 (2021) 229504. doi: 10.1016/j.jpowsour.2021.229504
|
[82] |
V. Etacheri, U. Geiger, Y. Gofer, et al., Exceptional electrochemical performance of Si-nanowires in 1, 3-dioxolane solutions: a surface chemical investigation, Langmuir 28 (2012) 6175–6184. doi: 10.1021/la300306v
|
[83] |
P. Dong, X. Zhang, Y. Cha, et al., In situ surface protection of lithium metal anode in Lithium–Selenium disulfide batteries with ionic liquid-based electrolytes, Nano Energy 69 (2020) 104434. doi: 10.1016/j.nanoen.2019.104434
|
[84] |
J. Lian, W. Guo, Y. Fu, Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries, J. Am. Chem. Soc. 143 (2021) 11063–11071. doi: 10.1021/jacs.1c04222
|
[85] |
D.Y. Wang, Y. Si, W. Guo, et al., Electrosynthesis of 1, 4-bis(diphenylphosphanyl) tetrasulfide via sulfur radical addition as cathode material for rechargeable lithium battery, Nat. Commun. 12 (2021) 3220. doi: 10.1038/s41467-021-23521-1
|
[86] |
Z. Wang, X. Li, W. Guo, et al., Anion intercalation of VS4 triggers atomic sulfur transfer to organic disulfide in rechargeable lithium battery, Adv. Funct. Mater. 31 (2021) 2009875. doi: 10.1002/adfm.202009875
|
[87] |
H. Liu, W.H. Lai, Q. Yang, et al., Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na–S batteries, Nano-Micro Lett. 13 (2021) 121. doi: 10.1007/s40820-021-00648-w
|
[88] |
H. Lin, K.H. Chen, Y. Shuai, et al., Influence of CsNO3 as electrolyte additive on electrochemical property of lithium anode in rechargeable battery, J. Cent. South Univ. 25 (2018) 719–728. doi: 10.1007/s11771-018-3776-x
|
[89] |
H. Wang, C.L. Wang, E. Matios, et al., Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate, Angew. Chem. Int. Ed. 57 (2018) 7734–7737. doi: 10.1002/anie.201801818
|
[90] |
J.L. Gu, C. Shen, Z. Fang, et al., Toward high-performance Li metal anode via difunctional protecting layer, Front. Chem. 7 (2019) 572. doi: 10.3389/fchem.2019.00572
|
[91] |
S. Liu, G.R. Li, X.P. Gao, Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery, ACS Appl. Mater. Interfaces 8 (2016) 7783–7789. doi: 10.1021/acsami.5b12231
|
[92] |
J. Li, L. Zhang, F.R. Qin, et al., ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium - sulfur batteries, J. Power Sources 442 (2019) 227232. doi: 10.1016/j.jpowsour.2019.227232
|
[93] |
W. Linert, R.F. Jameson, A. Taha, Donor numbers of anions in solution: the use of solvatochromic Lewis acid–base indicators, J. Chem. Soc., Dalton Trans. (1993) 3181–3186.
|
[94] |
J. Guo, Z. Wen, M. Wu, et al., Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode, Electrochem. Commun. 51 (2015) 59–63. doi: 10.1016/j.elecom.2014.12.008
|
[95] |
Y. Zhang, Y. Zhong, S. Liang, et al., formation and evolution of lithium metal anodecarbonate electrolyte interphases, ACS Materials Lett. 1 (2019) 254–259. doi: 10.1021/acsmaterialslett.9b00167
|
[96] |
Z.L. Brown, S. Heiskanen, B.L. Lucht, Using triethyl phosphate to increase the solubility of LiNO3 in carbonate electrolytes for improving the performance of the lithium metal anode, J. Electrochem. Soc. 166 (2019) A2523–A2527. doi: 10.1149/2.0991912jes
|
[97] |
D. Xiao, Q. Li, D. Luo, et al., Regulating the Li+-Solvation structure of ester electrolyte for high-energy-density lithium metal batteries, Small 16 (2020) 2004688. doi: 10.1002/smll.202004688
|
[98] |
S. Zhang, G. Yang, Z. Liu, et al., Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte, Nano Lett. 21 (2021) 3310–3317. doi: 10.1021/acs.nanolett.1c00848
|
[99] |
Y. Jie, X. Liu, Z. Lei, et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte, Angew. Chem. Int. Ed. 59 (2020) 3505–3510. doi: 10.1002/anie.201914250
|
[100] |
A. Ramasubramanian, V. Yurkiv, T. Foroozan, et al., Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries, J. Phys. Chem. C 123 (2019) 10237–10245. doi: 10.1021/acs.jpcc.9b00436
|
[101] |
N. Piao, S. Liu, B. Zhang, et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes, ACS Energy Lett. 6 (2021) 1839–1848. doi: 10.1021/acsenergylett.1c00365
|
[102] |
S. Li, W. Zhang, Q. Wu, et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries, Angew. Chem. Int. Ed. 59 (2020) 14935–14941. doi: 10.1002/anie.202004853
|
[103] |
H. Yang, X. Chen, N. Yao, et al., Dissolution–precipitation dynamics in ester electrolyte for high-stability lithium metal batteries, ACS Energy Lett. 6 (2021) 1413–1421.
|
[104] |
Y. Guan, A. Wang, S. Liu, et al., Protecting lithium anode with LiNO3/Al2O3/ PVDF-coated separator for lithium-sulfur batteries, J. Alloys Compd. 765 (2018) 544–550. doi: 10.1016/j.jallcom.2018.06.235
|
[105] |
Y. Liu, X. Qin, D. Zhou, et al., A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3- in carbonate electrolyte, Energy Storage Mater. 24 (2020) 229–236. doi: 10.1016/j.ensm.2019.08.016
|
[106] |
Q. Shi, Y. Zhong, M. Wu, et al., High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 5676. doi: 10.1073/pnas.1803634115
|
[107] |
X.Q. Zhang, T. Li, B.Q. Li, et al., A sustainable solid electrolyte interphase for highenergy-density lithium metal batteries under practical conditions, Angew. Chem. Int. Ed. 59 (2020) 3252–3257. doi: 10.1002/anie.201911724
|
[108] |
Q. Liu, Y. Xu, J. Wang, et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries, Nano-Micro Lett. 12 (2020) 176. doi: 10.1007/s40820-020-00514-1
|
[109] |
D. Jin, Y. Roh, T. Jo, et al., Robust cycling of ultrathin Li metal enabled by nitratepreplanted Li powder composite, Adv. Energy Mater. 11 (2021) 2003769. doi: 10.1002/aenm.202003769
|
[110] |
L. Fu, X. Wang, L. Wang, et al., A salt-in-metal anode: stabilizing the solid electrolyte interphase to enable prolonged battery cycling, Adv. Funct. Mater. 31 (2021) 2010602. doi: 10.1002/adfm.202010602
|
[111] |
X. Wang, L. Fu, R. Zhan, et al., Addressing the low solubility of a solid electrolyte interphase stabilizer in an electrolyte by composite battery anode design, ACS Appl. Mater. Interfaces 13 (2021) 13354–13361. doi: 10.1021/acsami.1c01571
|
[112] |
Y. Nagata, K. Nagao, M. Deguchi, et al., Amorphization of sodium cobalt oxide active materials for high-capacity all-solid-state sodium batteries, Chem. Mater. 30 (2018) 6998–7004. doi: 10.1021/acs.chemmater.8b01872
|
[113] |
X. Wang, H. Wang, M. Liu, et al., In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/adsorption mechanism, Small 16 (2020) 2000769. doi: 10.1002/smll.202000769
|
[114] |
W. Qi, L. Ben, H. Yu, et al., Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer, J. Power Sources 424 (2019) 150–157. doi: 10.1016/j.jpowsour.2019.03.077
|
[115] |
N. Togasaki, T. Momma, T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery, J. Power Sources 307 (2016) 98–104. doi: 10.1016/j.jpowsour.2015.12.123
|
[116] |
N. Togasaki, T. Gobara, T. Momma, et al., A comparative study of LiNO3 and LiTFSI for the cycling performance of sigma-MnO2 cathode in lithium- oxygen batteries, J. Electrochem. Soc. 164 (2017) A2225–A2230. doi: 10.1149/2.0051712jes
|
[117] |
L.N. Wang, J.Y. Liu, S.Y. Yuan, et al., To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes, Energy Environ. Sci. 9 (2016) 224–231. doi: 10.1039/C5EE02837J
|
[118] |
Z.J. Wang, K. Yang, Y.L. Song, et al., Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries, Nano Res. 13 (2020) 2431–2437. doi: 10.1007/s12274-020-2871-0
|
[119] |
L.S. Li, Y.F. Deng, H.H. Duan, et al., LiF and LiNO3 as synergistic additives for PEOPVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability, J. Energy Chem. 65 (2022) 319–328. doi: 10.1016/j.jechem.2021.05.055
|
[120] |
Z. Zhang, J.L. Wang, S.L. Zhang, et al., Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition, Energy Storage Mater. 43 (2021) 229–237. doi: 10.1016/j.ensm.2021.09.002
|
[121] |
Q. Zhao, P.Y. Chen, S.K. Li, et al., Solid-state polymer electrolytes stabilized by task-specific salt additives, J. Mater. Chem. A 7 (2019) 7823–7830. doi: 10.1039/C8TA12008K
|
[122] |
G.Y. Zheng, Y. Yang, J.J. Cha, et al., Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett. 11 (2011) 4462–4467. doi: 10.1021/nl2027684
|
[123] |
S.S. Zhang, Improved cyclability of liquid electrolyte lithium/sulfur batteries by optimizing electrolyte/sulfur ratio, Energies 5 (2012) 5190–5197. doi: 10.3390/en5125190
|
[124] |
Y. Yang, G.Y. Zheng, Y. Cui, A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage, Energy Environ. Sci. 6 (2013) 1552–1558. doi: 10.1039/c3ee00072a
|
[125] |
B.D. Adams, E.V. Carino, J.G. Connell, et al., Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes, Nano Energy 40 (2017) 607–617. doi: 10.1016/j.nanoen.2017.09.015
|
[126] |
L. Carbone, T. Coneglian, M. Gobet, et al., A simple approach for making a viable, safe, and high-performances lithium-sulfur battery, J. Power Sources 377 (2018) 26–35. doi: 10.1016/j.jpowsour.2017.11.079
|
[127] |
Y. Shuai, D.D. Wang, K.H. Chen, et al., Highly stable performance of lithiumsulfurized polyacrylonitrile batteries using a lean ether-based electrolyte, Chem. Commun. 55 (2019) 11271–11274. doi: 10.1039/C9CC05539H
|