Citation: | Sun Zhaoyang, Wen Xian, Wang Liming, Ji Dongxiao, Qin Xiaohong, Yu Jianyong, Ramakrishna Seeram. Emerging design principles, materials, and applications for moisture-enabled electric generation[J]. eScience, 2022, 2(1): 32-46. doi: 10.1016/j.esci.2021.12.009 |
[1] |
M. Tentzeris, A. Georgiadis, L. Roselli, Energy harvesting and scavenging, Proc. IEEE 102 (2014) 1644−1648 doi: 10.1109/JPROC.2014.2361599
|
[2] |
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, H. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science 345 (2014) 295−298 doi: 10.1126/science.1254763
|
[3] |
L. Wang, Z. Zhang, L. Geng, T. Yuan, Y. Liu, J. Guo, L. Fang, J. Qiu, S. Wang, Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics, Energy Environ. Sci. 11 (2018) 1307−1317 doi: 10.1039/C7EE03617E
|
[4] |
Z. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312 (2006) 242−246 doi: 10.1126/science.1124005
|
[5] |
Z. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and active mechanical and chemical sensors, ACS Nano 7 (2013) 9533−9557 doi: 10.1021/nn404614z
|
[6] |
D. Shen, W. Duley, P. Peng, M. Xiao, J. Feng, L. Liu, G. Zou, Y. Zhou, Moisture-enabled electricity generation: from physics and materials to self-powered applications, Adv. Mater. 32 (2020) 2003722 doi: 10.1002/adma.202003722
|
[7] |
Y. Huang, H. Cheng, L. Qu, Emerging materials for water-enabled electricity generation, ACS Mater. Lett. 3 (2021) 193−209 doi: 10.1021/acsmaterialslett.0c00474
|
[8] |
P. Kral, M. Shapiro, Nanotube electron drag in flowing liquids, Phys. Rev. Lett. 86 (2001) 131−134 doi: 10.1103/PhysRevLett.86.131
|
[9] |
S. Ghosh, A. Sood, N. Kumar, Carbon nanotube flow sensors, Science 299 (2003) 1042−1044 doi: 10.1126/science.1079080
|
[10] |
S. Ghosh, A. Sood, S. Ramaswamy, N. Kumar, Flow-induced voltage and current generation in carbon nanotubes, Phys. Rev. B 70 (2004) 205423 doi: 10.1103/PhysRevB.70.205423
|
[11] |
G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou, W. Guo, Water-evaporation-induced electricity with nanostructured carbon materials, Nat. Nanotechnol. 12 (2017) 317−321 doi: 10.1038/nnano.2016.300
|
[12] |
T. Ducati, L. Simoes, F. Galembeck, Charge partitioning at gas-solid interfaces: humidity causes electricity buildup on metals, Langmuir 26 (2010) 13763−13766 doi: 10.1021/la102494k
|
[13] |
F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture, Adv. Mater. 27 (2015) 4351−4357 doi: 10.1002/adma.201501867
|
[14] |
T. Xu, X. Ding, Y. Huang, C. Shao, L. Song, X. Gao, Z. Zhang, L. Qu, An efficient polymer moist-electric generator, Energy Environ. Sci. 12 (2019) 972−978 doi: 10.1039/c9ee00252a
|
[15] |
J. Xue, F. Zhao, C. Hu, Y. Zhao, H. Luo, L. Dai, L. Qu, Vapor-activated power generation on conductive polymer, Adv. Funct. Mater. 26 (2016) 8784−8792 doi: 10.1002/adfm.201604188
|
[16] |
H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng, C. Li, D. Xie, P. Yang, Y. Zhang, L. Qu, Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output, Nat. Nanotechnol. 16 (2021) 811−819 doi: 10.1038/s41565-021-00903-6
|
[17] |
K. Liu, P. Yang, S. Li, J. Li, T. Ding, G. Xue, Q. Chen, G. Feng, J. Zhou, Induced potential in porous carbon films through water vapor absorption, Angew. Chem. Int. Ed. 55 (2016) 8003−8807 doi: 10.1002/anie.201602708
|
[18] |
D. Shen, M. Xiao, G. Zou, L. Liu, W. Duley, Y. Zhou, Self-powered wearable electronics based on moisture enabled electricity generation, Adv. Mater. 30 (2018) 1705925 doi: 10.1002/adma.201705925
|
[19] |
X. Liu, H. Gao, J. Ward, X. Liu, B. Yin, T. Fu, J. Che, D. Lovley. J. Yao, Power generation from ambient humidity using protein nanowires, Nature 578 (2020) 550−554 doi: 10.1038/s41586-020-2010-9
|
[20] |
Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao, H. Yao, G. Shi, L. Qu, Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts, Nat. Commun. 9 (2018) 4166 doi: 10.1038/s41467-018-06633-z
|
[21] |
W. Sparreboom, A. van den Berg, J. Eijkel, Principles and applications of nanofluidic transport, Nat. Nanotechnol. 4 (2009) 713−720 doi: 10.1038/nnano.2009.332
|
[22] |
F. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel, Phys. Rev. Lett. 95 (2005) 116104 doi: 10.1103/PhysRevLett.95.116104
|
[23] |
L. Joly, C. Ybert, E. Trizac, L. Bocquet, Hydrodynamics within the Electric Double Layer on Slipping Surfaces, Phys. Rev. Lett. 93 (2004) 257805 doi: 10.1103/PhysRevLett.93.257805
|
[24] |
D. Stein, M. Kruithof, C. Dekker, Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett. 93 (2004) 035901 doi: 10.1103/PhysRevLett.93.035901
|
[25] |
H. Daiguji, P. Yang, A. Szeri, A. Majumdar, Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett. 4 (2004) 2315−2321 doi: 10.1021/nl0489945
|
[26] |
F. van der Heyden, D. Bonthuis, D. Stein,C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Lett. 6 (2006) 2232−2237 doi: 10.1021/nl061524l
|
[27] |
F. van der Heyden, D. Bonthuis, D. Stein, C. Meyer, C. Dekker, Power generation by pressure-driven transport of ions in nanofluidic channels, Nano Lett. 7 (2007) 1022−1025 doi: 10.1021/nl070194h
|
[28] |
Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei, M. Xue, Q. Wang, J. Zhou, W. Guo, Emerging hydrovoltaic technology, Nat. Nanotechnol. 13 (2018) 1109−1119 doi: 10.1038/s41565-018-0228-6
|
[29] |
Q. Lyu, B. Peng, Z. Xie, S. Du, L. Zhang, J. Zhu, Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures, ACS Appl. Mater. Interfaces 12 (2020) 57373−57381 doi: 10.1021/acsami.0c17931
|
[30] |
J. Holt, H. Park, Y. Wang, M. Stadermann, A. Artyukhin, C. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (2006) 1034−1037 doi: 10.1126/science.1126298
|
[31] |
U. Zaghloul, B. Bhushan, P. Pons, G. Papaioannou, F. Coccetti, R. Plana, On the influence of environment gases, relative humidity and gas purification on dielectric charging/discharging processes in electrostatically driven MEMS/NEMS devices, Nanotechnology 22 (2011) 035705 doi: 10.1088/0957-4484/22/3/035705
|
[32] |
P. Schweitzer, Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals, Fundamentals metallic 129 (2007) 48−55
|
[33] |
J. Lax, C. Price, H. Saaroni, On the spontaneous build-up of voltage between dissimilar metals under high relative humidity conditions, Sci. Rep. 10 (2020) 7642 doi: 10.1038/s41598-020-64409-2
|
[34] |
A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces, Surf. Sci. Rep. 64 (2009) 381−451 doi: 10.1016/j.surfrep.2009.07.001
|
[35] |
K. Moreira, D. Lermen, L. dos Santos, F. Galembeck, T. Burgo, Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator, Energy Environ. Sci. 14 (2021) 353−358 doi: 10.1039/d0ee03111a
|
[36] |
F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Highly efficient moisture-enabled electricity generation from graphene oxide frameworks, Energy Environ. Sci. 9 (2016) 912−916 doi: 10.1039/C5EE03701H
|
[37] |
Y. Liang, F. Zhao, Z. Cheng, Y. Deng, Y. Xiao, H. Cheng, P. Zhang, Y. Huang, H. Shao, L. Qu, Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics, Energy Environ. Sci. 11 (2018) 1730-1735 doi: 10.1039/C8EE00671G
|
[38] |
Y. Huang, H. Cheng, C. Yang, H. Yao, C. Li, L. Qu, All-region-applicable, continuous power supply of graphene oxide composite, Energy Environ. Sci., 12 (2019) 1848−1856 doi: 10.1039/c9ee00838a
|
[39] |
S. Daripa, K. Khawas, R. Behere, R. Verma, B. Kuila, Efficient moisture-induced energy harvesting from water-soluble conjugated block copolymer-functionalized reduced graphene oxide, ACS Omega 6 (2021) 7257−7265 doi: 10.1021/acsomega.0c03717
|
[40] |
Z. Li, J. Wang, L. Dai, X. Sun, M. An, C. Duan, J. Li, Y. Ni, Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation, ACS Appl. Mater. Interfaces 12 (2020) 55205−55214 doi: 10.1021/acsami.0c17970
|
[41] |
Q. Li, M. Zhou, Q. Yang, M. Yang, Q. Wu, Z. Zhang, J. Yu, Flexible carbon dots composite paper for electricity generation from water vapor absorption, J. Mater. Chem. A. 6 (2018) 10639−10643 doi: 10.1039/C8TA02505C
|
[42] |
X. Gao, T. Xu, C. Shao, Y. Han, B. Lu, Z. Zhang, L. Qu, Electric power generation using paper materials, J. Mater. Chem. A. 7 (2019) 20574−20578 doi: 10.1039/c9ta08264f
|
[43] |
M. Li, L. Zong, W. Yang, X. Li, J. You, X. Wu, Z. Li, C. Li, Biological nanofibrous generator for electricity harvest from moist air flow, Adv. Funct. Mater. 29 (2019) 1901798 doi: 10.1002/adfm.201901798
|
[44] |
S. Mandal, S. Roy, A. Mandal, T. Ghoshal, G. Das, A. Singh, D. Goswami, Protein-based flexible moisture-induced energy-harvesting devices, as self-biased electronic sensors, ACS Appl. Electron. Mater. 2 (2020) 780−789 doi: 10.1021/acsaelm.9b00842
|
[45] |
W. Yang, L. Lv, X. Li, X. Han, M. Li, C. Li, Qatarized silk nanofibrils for electricity generation from moisture and ion rectification, ACS Nano 14 (2020) 10600−10607 doi: 10.1021/acsnano.0c04686
|
[46] |
H. Wang, H. Cheng, Y. Huang, C. Yang, D. Wang, C. Li, L. Qu, Transparent, self-healing, arbitrary tailorable moist-electric film generator, Nano Energy 67 (2020) 104238 doi: 10.1016/j.nanoen.2019.104238
|
[47] |
Z. Luo, C. Liu, S. Fan, A moisture induced self-charging device for energy harvesting and storage, Nano Energy 60 (2019) 371−376 doi: 10.1016/j.nanoen.2019.03.073
|
[48] |
L. Li, Z. Chen, M. Hao, S. Wang, F. Sun, Z. Zhao, T. Zhang, Moisture-driven power generation for multifunctional flexible sensing systems, Nano Lett. 19 (2019) 5544−5552 doi: 10.1021/acs.nanolett.9b02081
|
[49] |
Z. Sun, L. Feng, C. Xiong, X. He, L. Wang, X. Qin, J. Yu, Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator, J. Mater. Chem. A 9 (2021) 7085−7093 doi: 10.1039/d0ta11974a
|
[50] |
X. Nie, B. J, N. Chen, Y. Liang, Q. Han, L. Qu, Gradient doped polymer nanowire for moist electric nanogenerator, Nano Energy 46 (2018) 297−304 doi: 10.1016/j.nanoen.2018.02.012
|
[51] |
N. Chen, Q. Liu, C. Liu, G. Zhang, J. Jing, C. Shao, Y. Han, L. Qu, MEG actualized by high-valent metal carrier transport, Nano Energy 65 (2019) 104047 doi: 10.1016/j.nanoen.2019.104047
|
[52] |
Y. Qin, Y. Wang, X. Sun, Y. Li, H. Xu, Y. Tan, Y. Li, T. Song, B. Sun, Constant electricity generation in nanostructured silicon by evaporation-driven water flow, Angew. Chem. Int. Ed. 59 (2020) 10619−10625 doi: 10.1002/anie.202002762
|
[53] |
B. Shao, Z. Song, X. Chen, Y. Wu, Y. Li, C. Song, F. Yang, T. Song, Y. Wang, S. Lee, B. Sun, Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output, ACS Nano 15 (2021) 7472− doi: 10.1021/acsnano.1c00891
|
[54] |
F. Wilhelm, W. Roth, The somatic symptom paradox in DSM-IV anxiety disorders: suggestions for a clinical focus in psychophysiology, Biol. Psychol. 57 (2001) 105−140 doi: 10.1016/S0301-0511(01)00091-6
|
[55] |
T. Trung, L. Duy, S. Ramasundaram, N. Lee, Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics, Nano Res. 10 (2017) 2021−2033 doi: 10.1007/s12274-016-1389-y
|
[56] |
D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu, B. Zhao, L. Liu, W. Duley, Y. Zhou, Self-Powered, Rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation, ACS Appl. Mater. Interfaces 11 (2019) 14249−14255 doi: 10.1021/acsami.9b01523
|
[57] |
H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi, L. Jiang, Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel, Nano Energy 45 (2018) 37−43 doi: 10.1016/j.nanoen.2017.12.033
|
[58] |
Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin, J. Yu, Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts, Mater. Horiz. 8 (2021) 2303−2309 doi: 10.1039/d1mh00565k
|
[59] |
T. Fu, X. Liu, S. Fu, T. Woodard, H. Gao, D. Lovley and J. Yao, Self-sustained green neuromorphic interfaces, Nat. Commun. 12 (2021) 3351 doi: 10.1038/s41467-021-23744-2
|
[60] |
X. Qi, T. Miao, C. Chi, G. Zhang, C. Zhang, Y. Du, M. An, W. Ma, X. Zhang, Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment, Nano Energy 77 (2020) 105096 doi: 10.1016/j.nanoen.2020.105096
|
[61] |
F. Gong, H. Li, Q. Zhou, M. Wang, W. Wang, Y. Lv, R. Xiao, D. Papavassiliou, Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation, Nano Energy 74 (2020) 104922 doi: 10.1016/j.nanoen.2020.104922
|
[62] |
Y. Han, B. Lu, C. Shao, T. Xu, Qi. Liu, Y. Liang, X. Jin, J. Gao, Z. Zhang, A hygroelectric power generator with energy self-storage, Chem. Eng. J. 384 (2020) 123366 doi: 10.1016/j.cej.2019.123366
|
[63] |
P. He, J. Wu, X. Pan, L. Chen, K. Liu, H. Gao, H. Wu, S. Cao, L. Huang, Y. Ni, Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications, J. Mater. Chem. A 8 (2020) 3109−3118 doi: 10.1039/c9ta12940e
|
[64] |
Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao, L. Jiang, L. Qu, Self-powered wearable graphene fiber for information expression, Nano Energy 32 (2017) 329−335 doi: 10.1016/j.nanoen.2016.12.062
|
[65] |
C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao, C. Gao, Y. Zhao, L. Qu, Wearable fiber form hygroelectric generator, Nano Energy 53 (2018) 698−705 doi: 10.1016/j.nanoen.2018.09.043
|
[66] |
H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang, L. Jiang, G. Shi, L. Qu, Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk, Energy Environ. Sci. 11 (2018) 2839−2845 doi: 10.1039/c8ee01502c
|
[67] |
Y. Huang, H. Cheng, G. Shi, L. Qu, Highly efficient moisture-triggered nanogenerator based on graphene quantum Dots, ACS Appl. Mater. Interfaces 9 (2017) 38170−38175 doi: 10.1021/acsami.7b12542
|
[68] |
W. Yang, X. Li, X. Han, W. Zhang, Z. Wang, X. Ma, M. Li, C. Li, Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture, Nano Energy 71 (2020) 104610 doi: 10.1016/j.nanoen.2020.104610
|
[69] |
T. Xu, X. Ding, C. Shao, L. Song, T. Lin, X. Gao, J. Xue, Z. Zhang, L. Qu, Electric power generation through the direct interaction of pristine graphene-oxide with water molecules, Small 14 (2018) 1704473 doi: 10.1002/smll.201704473
|
[70] |
F. Zhao, L. Wang, Y. Zhao, L. Qu, L. Dai, Graphene oxide nanoribbon assembly toward moisture powered information storage, Adv. Mater. 29 (2017) 1604972 doi: 10.1002/adma.201604972
|
[71] |
C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators, Adv. Mater. 31 (2019) 1805705 doi: 10.1002/adma.201805705
|