Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Sun Zhaoyang, Wen Xian, Wang Liming, Ji Dongxiao, Qin Xiaohong, Yu Jianyong, Ramakrishna Seeram. Emerging design principles, materials, and applications for moisture-enabled electric generation[J]. eScience, 2022, 2(1): 32-46. doi: 10.1016/j.esci.2021.12.009
Citation: Sun Zhaoyang, Wen Xian, Wang Liming, Ji Dongxiao, Qin Xiaohong, Yu Jianyong, Ramakrishna Seeram. Emerging design principles, materials, and applications for moisture-enabled electric generation[J]. eScience, 2022, 2(1): 32-46. doi: 10.1016/j.esci.2021.12.009

Emerging design principles, materials, and applications for moisture-enabled electric generation

doi: 10.1016/j.esci.2021.12.009
More Information
  • Smart generators that collect energy from the ambient environment are a new approach for meeting growing global energy needs. Moisture is one of the most abundant resources in the ambient environment, and using it to generate electricity has aroused great interest in recent years. In this review, we first summarize the emerging design principles of moisture power generation, including ion diffusion, streaming potential, and charged surface potential. Then, based on these fundamental principles, we systematically summarize the materials thus far known to be suitable for moisture power generation. Finally, we highlight the application of moisture energy generators in various fields, such as thermoelectricity, solar thermal evaporation, capacitors, strain sensors, and information storage, and discuss current challenges and future prospects for the development of moisture energy generators.
  • ● Emerging design principles of moisture power generation were summarized.
    ● Materials select principle for moisture power generation were also summarized.
    ● Applications of moisture energy generators were highlighted.
    1 These authors contribute equally to this work.
  • loading
  • [1]
    M. Tentzeris, A. Georgiadis, L. Roselli, Energy harvesting and scavenging, Proc. IEEE 102 (2014) 1644−1648 doi: 10.1109/JPROC.2014.2361599
    [2]
    A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, H. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science 345 (2014) 295−298 doi: 10.1126/science.1254763
    [3]
    L. Wang, Z. Zhang, L. Geng, T. Yuan, Y. Liu, J. Guo, L. Fang, J. Qiu, S. Wang, Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics, Energy Environ. Sci. 11 (2018) 1307−1317 doi: 10.1039/C7EE03617E
    [4]
    Z. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312 (2006) 242−246 doi: 10.1126/science.1124005
    [5]
    Z. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and active mechanical and chemical sensors, ACS Nano 7 (2013) 9533−9557 doi: 10.1021/nn404614z
    [6]
    D. Shen, W. Duley, P. Peng, M. Xiao, J. Feng, L. Liu, G. Zou, Y. Zhou, Moisture-enabled electricity generation: from physics and materials to self-powered applications, Adv. Mater. 32 (2020) 2003722 doi: 10.1002/adma.202003722
    [7]
    Y. Huang, H. Cheng, L. Qu, Emerging materials for water-enabled electricity generation, ACS Mater. Lett. 3 (2021) 193−209 doi: 10.1021/acsmaterialslett.0c00474
    [8]
    P. Kral, M. Shapiro, Nanotube electron drag in flowing liquids, Phys. Rev. Lett. 86 (2001) 131−134 doi: 10.1103/PhysRevLett.86.131
    [9]
    S. Ghosh, A. Sood, N. Kumar, Carbon nanotube flow sensors, Science 299 (2003) 1042−1044 doi: 10.1126/science.1079080
    [10]
    S. Ghosh, A. Sood, S. Ramaswamy, N. Kumar, Flow-induced voltage and current generation in carbon nanotubes, Phys. Rev. B 70 (2004) 205423 doi: 10.1103/PhysRevB.70.205423
    [11]
    G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou, W. Guo, Water-evaporation-induced electricity with nanostructured carbon materials, Nat. Nanotechnol. 12 (2017) 317−321 doi: 10.1038/nnano.2016.300
    [12]
    T. Ducati, L. Simoes, F. Galembeck, Charge partitioning at gas-solid interfaces: humidity causes electricity buildup on metals, Langmuir 26 (2010) 13763−13766 doi: 10.1021/la102494k
    [13]
    F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture, Adv. Mater. 27 (2015) 4351−4357 doi: 10.1002/adma.201501867
    [14]
    T. Xu, X. Ding, Y. Huang, C. Shao, L. Song, X. Gao, Z. Zhang, L. Qu, An efficient polymer moist-electric generator, Energy Environ. Sci. 12 (2019) 972−978 doi: 10.1039/c9ee00252a
    [15]
    J. Xue, F. Zhao, C. Hu, Y. Zhao, H. Luo, L. Dai, L. Qu, Vapor-activated power generation on conductive polymer, Adv. Funct. Mater. 26 (2016) 8784−8792 doi: 10.1002/adfm.201604188
    [16]
    H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng, C. Li, D. Xie, P. Yang, Y. Zhang, L. Qu, Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output, Nat. Nanotechnol. 16 (2021) 811−819 doi: 10.1038/s41565-021-00903-6
    [17]
    K. Liu, P. Yang, S. Li, J. Li, T. Ding, G. Xue, Q. Chen, G. Feng, J. Zhou, Induced potential in porous carbon films through water vapor absorption, Angew. Chem. Int. Ed. 55 (2016) 8003−8807 doi: 10.1002/anie.201602708
    [18]
    D. Shen, M. Xiao, G. Zou, L. Liu, W. Duley, Y. Zhou, Self-powered wearable electronics based on moisture enabled electricity generation, Adv. Mater. 30 (2018) 1705925 doi: 10.1002/adma.201705925
    [19]
    X. Liu, H. Gao, J. Ward, X. Liu, B. Yin, T. Fu, J. Che, D. Lovley. J. Yao, Power generation from ambient humidity using protein nanowires, Nature 578 (2020) 550−554 doi: 10.1038/s41586-020-2010-9
    [20]
    Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao, H. Yao, G. Shi, L. Qu, Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts, Nat. Commun. 9 (2018) 4166 doi: 10.1038/s41467-018-06633-z
    [21]
    W. Sparreboom, A. van den Berg, J. Eijkel, Principles and applications of nanofluidic transport, Nat. Nanotechnol. 4 (2009) 713−720 doi: 10.1038/nnano.2009.332
    [22]
    F. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel, Phys. Rev. Lett. 95 (2005) 116104 doi: 10.1103/PhysRevLett.95.116104
    [23]
    L. Joly, C. Ybert, E. Trizac, L. Bocquet, Hydrodynamics within the Electric Double Layer on Slipping Surfaces, Phys. Rev. Lett. 93 (2004) 257805 doi: 10.1103/PhysRevLett.93.257805
    [24]
    D. Stein, M. Kruithof, C. Dekker, Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett. 93 (2004) 035901 doi: 10.1103/PhysRevLett.93.035901
    [25]
    H. Daiguji, P. Yang, A. Szeri, A. Majumdar, Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett. 4 (2004) 2315−2321 doi: 10.1021/nl0489945
    [26]
    F. van der Heyden, D. Bonthuis, D. Stein,C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Lett. 6 (2006) 2232−2237 doi: 10.1021/nl061524l
    [27]
    F. van der Heyden, D. Bonthuis, D. Stein, C. Meyer, C. Dekker, Power generation by pressure-driven transport of ions in nanofluidic channels, Nano Lett. 7 (2007) 1022−1025 doi: 10.1021/nl070194h
    [28]
    Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei, M. Xue, Q. Wang, J. Zhou, W. Guo, Emerging hydrovoltaic technology, Nat. Nanotechnol. 13 (2018) 1109−1119 doi: 10.1038/s41565-018-0228-6
    [29]
    Q. Lyu, B. Peng, Z. Xie, S. Du, L. Zhang, J. Zhu, Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures, ACS Appl. Mater. Interfaces 12 (2020) 57373−57381 doi: 10.1021/acsami.0c17931
    [30]
    J. Holt, H. Park, Y. Wang, M. Stadermann, A. Artyukhin, C. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (2006) 1034−1037 doi: 10.1126/science.1126298
    [31]
    U. Zaghloul, B. Bhushan, P. Pons, G. Papaioannou, F. Coccetti, R. Plana, On the influence of environment gases, relative humidity and gas purification on dielectric charging/discharging processes in electrostatically driven MEMS/NEMS devices, Nanotechnology 22 (2011) 035705 doi: 10.1088/0957-4484/22/3/035705
    [32]
    P. Schweitzer, Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals, Fundamentals metallic 129 (2007) 48−55
    [33]
    J. Lax, C. Price, H. Saaroni, On the spontaneous build-up of voltage between dissimilar metals under high relative humidity conditions, Sci. Rep. 10 (2020) 7642 doi: 10.1038/s41598-020-64409-2
    [34]
    A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces, Surf. Sci. Rep. 64 (2009) 381−451 doi: 10.1016/j.surfrep.2009.07.001
    [35]
    K. Moreira, D. Lermen, L. dos Santos, F. Galembeck, T. Burgo, Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator, Energy Environ. Sci. 14 (2021) 353−358 doi: 10.1039/d0ee03111a
    [36]
    F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Highly efficient moisture-enabled electricity generation from graphene oxide frameworks, Energy Environ. Sci. 9 (2016) 912−916 doi: 10.1039/C5EE03701H
    [37]
    Y. Liang, F. Zhao, Z. Cheng, Y. Deng, Y. Xiao, H. Cheng, P. Zhang, Y. Huang, H. Shao, L. Qu, Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics, Energy Environ. Sci. 11 (2018) 1730-1735 doi: 10.1039/C8EE00671G
    [38]
    Y. Huang, H. Cheng, C. Yang, H. Yao, C. Li, L. Qu, All-region-applicable, continuous power supply of graphene oxide composite, Energy Environ. Sci., 12 (2019) 1848−1856 doi: 10.1039/c9ee00838a
    [39]
    S. Daripa, K. Khawas, R. Behere, R. Verma, B. Kuila, Efficient moisture-induced energy harvesting from water-soluble conjugated block copolymer-functionalized reduced graphene oxide, ACS Omega 6 (2021) 7257−7265 doi: 10.1021/acsomega.0c03717
    [40]
    Z. Li, J. Wang, L. Dai, X. Sun, M. An, C. Duan, J. Li, Y. Ni, Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation, ACS Appl. Mater. Interfaces 12 (2020) 55205−55214 doi: 10.1021/acsami.0c17970
    [41]
    Q. Li, M. Zhou, Q. Yang, M. Yang, Q. Wu, Z. Zhang, J. Yu, Flexible carbon dots composite paper for electricity generation from water vapor absorption, J. Mater. Chem. A. 6 (2018) 10639−10643 doi: 10.1039/C8TA02505C
    [42]
    X. Gao, T. Xu, C. Shao, Y. Han, B. Lu, Z. Zhang, L. Qu, Electric power generation using paper materials, J. Mater. Chem. A. 7 (2019) 20574−20578 doi: 10.1039/c9ta08264f
    [43]
    M. Li, L. Zong, W. Yang, X. Li, J. You, X. Wu, Z. Li, C. Li, Biological nanofibrous generator for electricity harvest from moist air flow, Adv. Funct. Mater. 29 (2019) 1901798 doi: 10.1002/adfm.201901798
    [44]
    S. Mandal, S. Roy, A. Mandal, T. Ghoshal, G. Das, A. Singh, D. Goswami, Protein-based flexible moisture-induced energy-harvesting devices, as self-biased electronic sensors, ACS Appl. Electron. Mater. 2 (2020) 780−789 doi: 10.1021/acsaelm.9b00842
    [45]
    W. Yang, L. Lv, X. Li, X. Han, M. Li, C. Li, Qatarized silk nanofibrils for electricity generation from moisture and ion rectification, ACS Nano 14 (2020) 10600−10607 doi: 10.1021/acsnano.0c04686
    [46]
    H. Wang, H. Cheng, Y. Huang, C. Yang, D. Wang, C. Li, L. Qu, Transparent, self-healing, arbitrary tailorable moist-electric film generator, Nano Energy 67 (2020) 104238 doi: 10.1016/j.nanoen.2019.104238
    [47]
    Z. Luo, C. Liu, S. Fan, A moisture induced self-charging device for energy harvesting and storage, Nano Energy 60 (2019) 371−376 doi: 10.1016/j.nanoen.2019.03.073
    [48]
    L. Li, Z. Chen, M. Hao, S. Wang, F. Sun, Z. Zhao, T. Zhang, Moisture-driven power generation for multifunctional flexible sensing systems, Nano Lett. 19 (2019) 5544−5552 doi: 10.1021/acs.nanolett.9b02081
    [49]
    Z. Sun, L. Feng, C. Xiong, X. He, L. Wang, X. Qin, J. Yu, Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator, J. Mater. Chem. A 9 (2021) 7085−7093 doi: 10.1039/d0ta11974a
    [50]
    X. Nie, B. J, N. Chen, Y. Liang, Q. Han, L. Qu, Gradient doped polymer nanowire for moist electric nanogenerator, Nano Energy 46 (2018) 297−304 doi: 10.1016/j.nanoen.2018.02.012
    [51]
    N. Chen, Q. Liu, C. Liu, G. Zhang, J. Jing, C. Shao, Y. Han, L. Qu, MEG actualized by high-valent metal carrier transport, Nano Energy 65 (2019) 104047 doi: 10.1016/j.nanoen.2019.104047
    [52]
    Y. Qin, Y. Wang, X. Sun, Y. Li, H. Xu, Y. Tan, Y. Li, T. Song, B. Sun, Constant electricity generation in nanostructured silicon by evaporation-driven water flow, Angew. Chem. Int. Ed. 59 (2020) 10619−10625 doi: 10.1002/anie.202002762
    [53]
    B. Shao, Z. Song, X. Chen, Y. Wu, Y. Li, C. Song, F. Yang, T. Song, Y. Wang, S. Lee, B. Sun, Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output, ACS Nano 15 (2021) 7472− doi: 10.1021/acsnano.1c00891
    [54]
    F. Wilhelm, W. Roth, The somatic symptom paradox in DSM-IV anxiety disorders: suggestions for a clinical focus in psychophysiology, Biol. Psychol. 57 (2001) 105−140 doi: 10.1016/S0301-0511(01)00091-6
    [55]
    T. Trung, L. Duy, S. Ramasundaram, N. Lee, Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics, Nano Res. 10 (2017) 2021−2033 doi: 10.1007/s12274-016-1389-y
    [56]
    D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu, B. Zhao, L. Liu, W. Duley, Y. Zhou, Self-Powered, Rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation, ACS Appl. Mater. Interfaces 11 (2019) 14249−14255 doi: 10.1021/acsami.9b01523
    [57]
    H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi, L. Jiang, Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel, Nano Energy 45 (2018) 37−43 doi: 10.1016/j.nanoen.2017.12.033
    [58]
    Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin, J. Yu, Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts, Mater. Horiz. 8 (2021) 2303−2309 doi: 10.1039/d1mh00565k
    [59]
    T. Fu, X. Liu, S. Fu, T. Woodard, H. Gao, D. Lovley and J. Yao, Self-sustained green neuromorphic interfaces, Nat. Commun. 12 (2021) 3351 doi: 10.1038/s41467-021-23744-2
    [60]
    X. Qi, T. Miao, C. Chi, G. Zhang, C. Zhang, Y. Du, M. An, W. Ma, X. Zhang, Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment, Nano Energy 77 (2020) 105096 doi: 10.1016/j.nanoen.2020.105096
    [61]
    F. Gong, H. Li, Q. Zhou, M. Wang, W. Wang, Y. Lv, R. Xiao, D. Papavassiliou, Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation, Nano Energy 74 (2020) 104922 doi: 10.1016/j.nanoen.2020.104922
    [62]
    Y. Han, B. Lu, C. Shao, T. Xu, Qi. Liu, Y. Liang, X. Jin, J. Gao, Z. Zhang, A hygroelectric power generator with energy self-storage, Chem. Eng. J. 384 (2020) 123366 doi: 10.1016/j.cej.2019.123366
    [63]
    P. He, J. Wu, X. Pan, L. Chen, K. Liu, H. Gao, H. Wu, S. Cao, L. Huang, Y. Ni, Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications, J. Mater. Chem. A 8 (2020) 3109−3118 doi: 10.1039/c9ta12940e
    [64]
    Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao, L. Jiang, L. Qu, Self-powered wearable graphene fiber for information expression, Nano Energy 32 (2017) 329−335 doi: 10.1016/j.nanoen.2016.12.062
    [65]
    C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao, C. Gao, Y. Zhao, L. Qu, Wearable fiber form hygroelectric generator, Nano Energy 53 (2018) 698−705 doi: 10.1016/j.nanoen.2018.09.043
    [66]
    H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang, L. Jiang, G. Shi, L. Qu, Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk, Energy Environ. Sci. 11 (2018) 2839−2845 doi: 10.1039/c8ee01502c
    [67]
    Y. Huang, H. Cheng, G. Shi, L. Qu, Highly efficient moisture-triggered nanogenerator based on graphene quantum Dots, ACS Appl. Mater. Interfaces 9 (2017) 38170−38175 doi: 10.1021/acsami.7b12542
    [68]
    W. Yang, X. Li, X. Han, W. Zhang, Z. Wang, X. Ma, M. Li, C. Li, Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture, Nano Energy 71 (2020) 104610 doi: 10.1016/j.nanoen.2020.104610
    [69]
    T. Xu, X. Ding, C. Shao, L. Song, T. Lin, X. Gao, J. Xue, Z. Zhang, L. Qu, Electric power generation through the direct interaction of pristine graphene-oxide with water molecules, Small 14 (2018) 1704473 doi: 10.1002/smll.201704473
    [70]
    F. Zhao, L. Wang, Y. Zhao, L. Qu, L. Dai, Graphene oxide nanoribbon assembly toward moisture powered information storage, Adv. Mater. 29 (2017) 1604972 doi: 10.1002/adma.201604972
    [71]
    C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators, Adv. Mater. 31 (2019) 1805705 doi: 10.1002/adma.201805705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (326) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return