Citation: | Meng Fanxu, Dai Chencheng, Liu Zheng, Luo Songzhu, Ge Jingjie, Duan Yan, Chen Gao, Wei Chao, Chen Riccardo Ruixi, Wang Jiarui, Mandler Daniel, Xu Zhichuan J.. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides[J]. eScience, 2022, 2(1): 87-94. doi: 10.1016/j.esci.2022.02.001 |
![]() |
![]() |
[1] |
D. A. Bulushev, J. R. H. Ross, Towards sustainable production of formic acid, ChemSusChem 11 (2018) 821-836 doi: 10.1002/cssc.201702075
|
[2] |
I. A. Zolotarskii, T. V. Andrushkevich, G. Y. Popova, S. Stompel, V. O. Efimov, V. B. Nakrokhin, L. Y. Zudilina, N. V. Vernikovskaya, Modeling, design and operation of pilot plant for two-stage oxidation of methanol into formic acid, Chem. Eng. J. 238 (2014) 111-119 doi: 10.1016/j.cej.2013.08.026
|
[3] |
J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, H. Kieczka, Formic acid, in: B. Elvers, C. Ley (Eds.), Ullmann's Encyclopedia of Industrial Chemistry, 2016, pp. 1-22
|
[4] |
C. Fellay, P. J. Dyson, G. Laurenczy, A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst, Angew. Chem. Int. Ed. 47 (2008) 3966-3968 doi: 10.1002/anie.200800320
|
[5] |
F. Joo, A breakthrough in sustainable production of formate salts: combined catalytic methanol dehydrogenation and bicarbonate hydrogenation, ChemCatChem 6 (2014) 3306-3308 doi: 10.1002/cctc.201402591
|
[6] |
T. V. Andrushkevich, G. Y. Popova, E. V. Danilevich, I. A. Zolotarskii, V. B. Nakrokhin, T. A. Nikoro, S. I. Stompel, V. N. Parmon, A new gas-phase method for formic acid production: tests on a pilot plant, Catalys. Indus. 6 (2014) 17-24 doi: 10.1134/S2070050414010024
|
[7] |
Z. Pi, H. Zhong, Integrating hydrogen production with selective methanol oxidation to value-added formate over a NiS bifunctional electrocatalyst, IOP Conf. Ser. Earth Environ. Sci. 651 (2021) 042062 doi: 10.1088/1755-1315/651/4/042062
|
[8] |
X. Han, H. Sheng, C. Yu, T. W. Walker, G. W. Huber, J. Qiu, S. Jin, Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts, ACS Catal. 10 (2020) 6741-6752 doi: 10.1021/acscatal.0c01498
|
[9] |
C. Dong, X. Zong, W. Jiang, L. Niu, Z. Liu, D. Qu, X. Wang, Z. Sun, Recent advances of ceria-based materials in the oxidation of carbon monoxide, Small Struct. 2 (2021) 2000081 doi: 10.1002/sstr.202000081
|
[10] |
L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li, Y. Luo, S. Gao, X. Shi, A. M. Asiri, X. Sun, Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting, Small Struct. 2 (2021) 2000048 doi: 10.1002/sstr.202000048
|
[11] |
S. S. Mahapatra, J. Datta, Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium, Intern. J. Electrochem. 2011 (2011) 1-16 doi: 10.4061/2011/563495
|
[12] |
M. V. Pagliaro, M. Bellini, J. Filippi, M. G. Folliero, A. Marchionni, H. A. Miller, W. Oberhauser, F. Vizza, Hydrogen production from the electrooxidation of methanol and potassium formate in alkaline media on carbon supported Rh and Pd nanoparticles, Inorg. Chim. Acta. 470 (2018) 263-269 doi: 10.1016/j.ica.2017.05.055
|
[13] |
D. Y. Chung, K.-J. Lee, Y.-E. Sung, Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation, J. Phys. Chem. C 120 (2016) 9028-9035 doi: 10.1021/acs.jpcc.5b12303
|
[14] |
W. Huang, H. Wang, J. Zhou, J. Wang, P. N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S. T. Lee, H. Dai, Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene, Nat. Commun. 6 (2015) 10035 doi: 10.1038/ncomms10035
|
[15] |
S. W. Lee, S. Chen, W. Sheng, N. Yabuuchi, Y.-T. Kim, T. Mitani, E. Vescovo, Y. Shao-Horn, Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol, J. Am. Chem. Soc. 131 (2009) 15669-15677 doi: 10.1021/ja9025648
|
[16] |
J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, Y. Shao-Horn, Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation, J. Am. Chem. Soc. 135 (2013) 7985-7991 doi: 10.1021/ja402072r
|
[17] |
K. Miecznikowski, WO3 decorated carbon nanotube supported PtSn nanoparticles with enhanced activity towards electrochemical oxidation of ethylene glycol in direct alcohol fuel cells, Arab. J. Chem. 13 (2020) 1020-1031 doi: 10.1016/j.arabjc.2017.09.005
|
[18] |
Y.-W. Zhou, Y.-F. Chen, K. Jiang, Z. Liu, Z.-J. Mao, W.-Y. Zhang, W.-F. Lin, W.-B. Cai, Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst, Appl. Catal. B Environ. 280 (2021) doi: 10.1016/j.apcatb.2020.119393
|
[19] |
J. Mateos-Santiago, M. L. Hernandez-Pichardo, L. Lartundo-Rojas, A. Manzo-Robledo, Methanol electro-oxidation on Pt-carbon vulcan catalyst modified with WOx nanostructures: an approach to the reaction sequence using DEMS, Ind. Eng. Chem. Res. 56 (2016) 161-167
|
[20] |
K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M. N. Banis, P. Zhang, F. Li, J. Li, L. Chen, A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation, NPG Asia Mater. 7 (2015) e153-e153
|
[21] |
H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys, J. Phys. Chem. 97 (1993) 12020-12029 doi: 10.1021/j100148a030
|
[22] |
A. G. Hubert, M. Nenad, N. R. Philip, J. C. Elton, Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys, J. Electrochem. Soc. 141 (1994) 1795-1803 doi: 10.1149/1.2055007
|
[23] |
L. Yaqoob, T. Noor, N. Iqbal, Recent progress in development of efficient electrocatalyst for methanol oxidation reaction in direct methanol fuel cell, Int. J. Energy Res. 45 (2020) 6550-6583
|
[24] |
A. Yuda, A. Ashok, A. Kumar, A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction, Catal. Rev. (2020) 1-103
|
[25] |
S. Rezaee, S. Shahrokhian, Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol, Appl. Catal. B Environ. 244 (2019) 802-813 doi: 10.1016/j.apcatb.2018.12.013
|
[26] |
M. Li, X. Deng, K. Xiang, Y. Liang, B. Zhao, J. Hao, J. L. Luo, X. Z. Fu, Value-Added formate production from selective methanol oxidation as anodic reaction to enhance electrochemical hydrogen cogeneration, ChemSusChem 13 (2020) 914-921 doi: 10.1002/cssc.201902921
|
[27] |
K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J. L. Luo, X. Z. Fu, Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt Hydroxide@Hydroxysulfide nanosheets electrocatalysts, Adv. Funct. Mater. 30 (2020) doi: 10.1002/adfm.201909610
|
[28] |
C. Liu, W. Zhou, J. Zhang, Z. Chen, S. Liu, Y. Zhang, J. Yang, L. Xu, W. Hu, Y. Chen, Y. Deng, Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction, Adv. Energy Mater. 10 (2020) doi: 10.1002/aenm.202001397
|
[29] |
B. Miao, Z.-P. Wu, H. Xu, M. Zhang, Y. Chen, L. Wang, DFT studies on the key competing reaction steps towards complete ethanol oxidation on transition metal catalysts, Comput. Mater. Sci. 156 (2019) 175-186 doi: 10.1016/j.commatsci.2018.09.029
|
[30] |
J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang, Q. Wang, L. Wang, X.-Z. Fu, J.-L. Luo, In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution, Appl. Catal. B Environ. 281 (2021)
|
[31] |
J. Li, R. Wei, X. Wang, Y. Zuo, X. Han, J. Arbiol, J. Llorca, Y. Yang, A. Cabot, C. Cui, Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide, Angew Chem. Int. Ed. Engl. 59 (2020) 20826-20830 doi: 10.1002/anie.202004301
|
[32] |
J. Lv, W. Feng, S. Yang, H. Liu, X. Huang, Methanol dissociation and oxidation on single Fe atom supported on graphitic carbon nitride, Appl. Organomet. Chem. 33 (2019)
|
[33] |
J. Li, C. Xing, Y. Zhang, T. Zhang, M. C. Spadaro, Q. Wu, Y. Yi, S. He, J. Llorca, J. Arbiol, A. Cabot, C. Cui, Nickel iron diselenide for highly efficient and selective electrocatalytic conversion of methanol to formate, Small 17 (2021) e2006623 doi: 10.1002/smll.202006623
|
[34] |
Y. Duan, S. Sun, S. Xi, X. Ren, Y. Zhou, G. Zhang, H. Yang, Y. Du, Z. J. Xu, Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction, Chem. Mater. 29 (2017) 10534-10541 doi: 10.1021/acs.chemmater.7b04534
|
[35] |
M. Wang, B. Han, J. Deng, Y. Jiang, M. Zhou, M. Lucero, Y. Wang, Y. Chen, Z. Yang, A. T. N'Diaye, Q. Wang, Z. J. Xu, Z. Feng, Influence of Fe substitution into LaCoO3 electrocatalysts on oxygen-reduction activity, ACS Appl. Mater. Interfaces 11 (2019) 5682-5686 doi: 10.1021/acsami.8b20780
|
[36] |
M. Sivakumar, M. Sakthivel, S.-M. Chen, P. Veerakumar, S.-B. Liu, Sol-gel synthesis of carbon-coated LaCoO3 for effective electrocatalytic oxidation of salicylic acid, Chemelectrochem 4 (2017) 935-940 doi: 10.1002/celc.201600714
|
[37] |
C. Sun, J. A. Alonso, J. Bian, Recent advances in perovskite-type oxides for energy conversion and storage applications, Adv. Energy Mater. 11 (2021) 2000459 doi: 10.1002/aenm.202000459
|
[38] |
R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767 doi: 10.1107/S0567739476001551
|
[39] |
H. Liang, Y. Hong, C. Zhu, S. Li, Y. Chen, Z. Liu, D. Ye, Influence of partial Mn-substitution on surface oxygen species of LaCoO3 catalysts, Catal. Today 201 (2013) 98-102 doi: 10.1016/j.cattod.2012.04.036
|
[40] |
X. Li, H. Zhang, S. Li, W. Fan, M. Zhao, IR transmission spectra of nanocrystalline powder materials of the composite oxides La1 − xSrxFe1 − yCoyO3 with the perovskite structure, Mater. Chem. Phys. 41 (1995) 41-45 doi: 10.1016/0254-0584(95)01502-7
|
[41] |
J. Y. Chang, B. N. Lin, Y. Y. Hsu, H. C. Ku, Co K-edge XANES and spin-state transition of RCoO3 (R=La, Eu), Phys. B Condens. Matter 329-333 (2003) 826-828
|
[42] |
C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao, Z. J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev. 48 (2019) 2518-2534 doi: 10.1039/c8cs00848e
|
[43] |
N. A. Karim, S. K. Kamarudin, L. K. Shyuan, Z. Yaakob, W. R. W. Daud, A. A. H. Khadum, Novel cathode catalyst for DMFC: study of the density of states of oxygen adsorption using density functional theory, Int. J. Hydrogen Energy 39 (2014) 17295-17305 doi: 10.1016/j.ijhydene.2014.06.110
|
[44] |
C. Dai, Y. Sun, G. Chen, A. C. Fisher, Z. J. Xu, Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides, Angew. Chem. Int. Ed. 59 (2020) 9418-9422 doi: 10.1002/anie.202002923
|