Citation: | Guo Hui, Si Duan-Hui, Zhu Hong-Jing, Li Qiu-Xia, Huang Yuan-Biao, Cao Rong. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities[J]. eScience, 2022, 2(3): 295-303. doi: 10.1016/j.esci.2022.03.007 |
![]() |
![]() |
[1] |
J. Liang, Q. Wu, Y.B. Huang, R. Cao, Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis, Energy Chem. 3 (2021) 100064. doi: 10.1016/j.enchem.2021.100064
|
[2] |
Y.H. Zou, Q.J. Wu, Q. Yin, Y.B. Huang, R. Cao, Self-assembly of imidazolium-functionalized Zr-based metal-organic polyhedra for catalytic conversion of CO2 into cyclic carbonates, Inorg. Chem. 60 (2021) 2112–2116. doi: 10.1021/acs.inorgchem.0c01199
|
[3] |
S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C.P. Berlinguette, Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell, Science 365 (2019) 367–369. doi: 10.1126/science.aax4608
|
[4] |
D. Gao, R.M. Arán-Ais, H.S. Jeon, B.R. Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products, Nat. Catal. 2 (2019) 198–210. doi: 10.1038/s41929-019-0235-5
|
[5] |
A. Cherevotan, J. Raj, L. Dheer, S. Roy, S. Sarkar, R. Das, C.P. Vinod, S. Xu, P. Wells, U.V. Waghmare, S.C. Peter, Operando generated ordered heterogeneous catalyst for the selective conversion of CO2 to methanol, ACS Energy Lett. 6 (2021) 509–516. doi: 10.1021/acsenergylett.0c02614
|
[6] |
Y. Mun, S. Lee, A. Cho, S. Kim, J.W. Han, J. Lee, Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO, Appl. Catal. B 246 (2019) 82–88. doi: 10.1016/j.apcatb.2019.01.021
|
[7] |
J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction, Nat. Commun. 11 (2020) 4341. doi: 10.1038/s41467-020-18143-y
|
[8] |
C. Zhao, G. Luo, X. Liu, W. Zhang, Z. Li, Q. Xu, Q. Zhang, H. Wang, D. Li, F. Zhou, Y. Qu, X. Han, Z. Zhu, G. Wu, J. Wang, J. Zhu, T. Yao, Y. Li, H.J.M. Bouwmeester, Y. Wu, In situ topotactic transformation of an interstitial alloy for CO electroreduction, Adv. Mater. 32 (2020) e2002382. doi: 10.1002/adma.202002382
|
[9] |
X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction, Angew. Chem. Int. Ed. 57 (2018) 2427–2431. doi: 10.1002/anie.201712221
|
[10] |
D. Karapinar, C.E. Creissen, J.G. Rivera de la Cruz, M.W. Schreiber, M. Fontecave, Electrochemical CO2 reduction to ethanol with copper-based catalysts, ACS Energy Lett. 6 (2021) 694–706. doi: 10.1021/acsenergylett.0c02610
|
[11] |
F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity, Angew. Chem. Int. Ed. 56 (2017) 505–509. doi: 10.1002/anie.201608279
|
[12] |
W. Zhu, S. Kattel, F. Jiao, J.G. Chen, Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra, Adv. Energy Mater. 9 (2019) 1802840. doi: 10.1002/aenm.201802840
|
[13] |
Y.C. Li, G. Lee, T. Yuan, Y. Wang, D.-H. Nam, Z. Wang, F.P. García de Arquer, Y. Lum, C.-T. Dinh, O. Voznyy, E.H. Sargent, CO2 electroreduction from carbonate electrolyte, ACS Energy Lett. 4 (2019) 1427–1431. doi: 10.1021/acsenergylett.9b00975
|
[14] |
Y. Peng, L. Wang, Q. Luo, Y. Cao, Y. Dai, Z. Li, H. Li, X. Zheng, W. Yan, J. Yang, J. Zeng, Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol, Inside Chem. 4 (2018) 613–625.
|
[15] |
D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mater. 16 (2017) 220–224. doi: 10.1038/nmat4766
|
[16] |
D.L. Meng, M.D. Zhang, D.H. Si, M.J. Mao, Y. Hou, Y.B. Huang, R. Cao, Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts, Angew. Chem. Int. Ed. 60 (2021) 25485–25492. doi: 10.1002/anie.202111136
|
[17] |
Q. Wu, M.J. Mao, Q.J. Wu, J. Liang, Y.B. Huang, R. Cao, Construction of donoracceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction, Small 17 (2021) 2004933. doi: 10.1002/smll.202004933
|
[18] |
Q. Wu, R.-K. Xie, M.-J. Mao, G.-L. Chai, J.-D. Yi, S.-S. Zhao, Y.-B. Huang, R. Cao, Integration of strong electron transporter tetrathiafulvalene into metalloporphyrinbased covalent organic framework for highly efficient electroreduction of CO2, ACS Energy Lett. 5 (2020) 1005–1012. doi: 10.1021/acsenergylett.9b02756
|
[19] |
X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G.E. Sterbinsky, Q. Ma, Y.-G. Wang, Z. Feng, J. Li, H. Dai, Y. Liang, Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction, Nat. Energy 5 (2020) 684–692. doi: 10.1038/s41560-020-0667-9
|
[20] |
X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites, J. Am. Chem. Soc. 143 (2021) 7242–7246. doi: 10.1021/jacs.1c01466
|
[21] |
T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, H. Wang, Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst, Joule 3 (2019) 265–278. doi: 10.1016/j.joule.2018.10.015
|
[22] |
C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu, D. He, D. Xi, Q. Zhang, T. Yuan, Y. Qu, J. Yang, F. Zhou, Z. Yang, X. Wang, J. Wang, J. Luo, Y. Li, H. Duan, Y. Wu, Y. Li, Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction, Joule 3 (2019) 584–594. doi: 10.1016/j.joule.2018.11.008
|
[23] |
L. Jiao, J. Zhu, Y. Zhang, W. Yang, S. Zhou, A. Li, C. Xie, X. Zheng, W. Zhou, S.H. Yu, H.L. Jiang, Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction, J. Am. Chem. Soc. 143 (2021) 19417–19424. doi: 10.1021/jacs.1c08050
|
[24] |
J.D. Yi, R. Xie, Z.L. Xie, G.L. Chai, T.F. Liu, R.P. Chen, Y.B. Huang, R. Cao, Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding, Angew. Chem. Int. Ed. 59 (2020) 23641–23648. doi: 10.1002/anie.202010601
|
[25] |
M.-D. Zhang, D.-H. Si, J.-D. Yi, Q. Yin, Y.-B. Huang, R. Cao, Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon Dioxide reduction reaction, Sci. China Chem. 64 (2021) 1332–1339.
|
[26] |
S. Wei, H. Zou, W. Rong, F. Zhang, Y. Ji, L. Duan, Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in A wide operating potential window, Appl. Catal. B 284 (2021) 119739. doi: 10.1016/j.apcatb.2020.119739
|
[27] |
Y.N. Gong, L. Jiao, Y. Qian, C.Y. Pan, L. Zheng, X. Cai, B. Liu, S.H. Yu, H.L. Jiang, Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction, Angew. Chem. Int. Ed. 59 (2020) 2705–2709. doi: 10.1002/anie.201914977
|
[28] |
Q. Wu, J. Liang, Z.-L. Xie, Y.-B. Huang, R. Cao, Spatial sites separation strategy to fabricate atomically isolated nickel catalysts for efficient CO2 electroreduction, ACS Mater. Lett. 3 (2021) 454–461. doi: 10.1021/acsmaterialslett.1c00090
|
[29] |
Y. Hou, Y.-B. Huang, Y.-L. Liang, G.-L. Chai, J.-D. Yi, T. Zhang, K.-T. Zang, J. Luo, R. Xu, H. Lin, S.-Y. Zhang, H.-M. Wang, R. Cao, Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2, CCS Chem. 1 (2019) 384–395. doi: 10.31635/ccschem.019.20190011
|
[30] |
H. Yang, Y. Liu, X. Liu, X. Wang, H. Tian, G.I.N. Waterhouse, P.E. Kruger, S.G. Telfer, S. Ma, Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis, eScience. https://doi.org/10.1016/j.esci.2022.02.005.
|
[31] |
K. Jiang, S. Siahrostami, A.J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.-B. Cai, D. Bell, K. Chan, J.K. Nørskov, Y. Cui, H. Wang, Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis, Inside Chem. 3 (2017) 950–960.
|
[32] |
X. Rong, H.J. Wang, X.L. Lu, R. Si, T.B. Lu, Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction, Angew. Chem. Int. Ed. 59 (2020) 1961–1965. doi: 10.1002/anie.201912458
|
[33] |
M. Zhang, T.-S. Wu, S. Hong, Q. Fan, Y.-L. Soo, J. Masa, J. Qiu, Z. Sun, Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance, ACS Sustain. Chem. Eng. 7 (2019) 15030–15035. doi: 10.1021/acssuschemeng.9b03502
|
[34] |
X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction, J. Am. Chem. Soc. 139 (2017) 14889–14892. doi: 10.1021/jacs.7b09074
|
[35] |
L. Jiao, W. Yang, G. Wan, R. Zhang, X. Zheng, H. Zhou, S.H. Yu, H.L. Jiang, Singleatom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures, Angew. Chem. Int. Ed. 59 (2020) 20589–20595. doi: 10.1002/anie.202008787
|
[36] |
Y. Cheng, S. Zhao, H. Li, S. He, J.-P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M.F. Chisholm, S.-Z. Yang, C. Liu, J.G. Chen, S.P. Jiang, Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2, Appl. Catal. B 243 (2019) 294–303. doi: 10.1016/j.apcatb.2018.10.046
|
[37] |
K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction, Energy Environ. Sci. 11 (2018) 893–903. doi: 10.1039/C7EE03245E
|
[38] |
M. Wang, B. Zhang, J. Ding, N. Xu, M.T. Bernards, Y. He, Y. Shi, Three-dimensional nitrogen-doped graphene aerogel-supported MnO nanoparticles as efficient electrocatalysts for CO2 reduction to CO, ACS Sustain. Chem. Eng. 8 (2020) 4983–4994. doi: 10.1021/acssuschemeng.0c01194
|
[39] |
K. Ye, G. Zhang, X.-Y. Ma, C. Deng, X. Huang, C. Yuan, G. Meng, W.-B. Cai, K. Jiang, Resolving local reaction environment toward an optimized CO2-to-CO conversion performance, Energy Environ. Sci. 15 (2022) 749–759. doi: 10.1039/D1EE02966E
|
[40] |
M. Kuang, A. Guan, Z. Gu, P. Han, L. Qian, G. Zheng, Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion, Nano Res. 12 (2019) 2324–2329. doi: 10.1007/s12274-019-2396-6
|
[41] |
S.-F. Tang, X.-L. Lu, C. Zhang, Z.-W. Wei, R. Si, T.-B. Lu, Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate, Sci. Bull. 66 (2021) 1533–1541. doi: 10.1016/j.scib.2021.03.020
|
[42] |
M. Li, H. Wang, W. Luo, P.C. Sherrell, J. Chen, J. Yang, Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction, Adv. Mater. 32 (2020), e2001848. doi: 10.1002/adma.202001848
|
[43] |
S. Li, M. Ceccato, X. Lu, S. Frank, N. Lock, A. Roldan, X.-M. Hu, T. Skrydstrup, K. Daasbjerg, Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO2 reduction, J. Mater. Chem. A 9 (2021) 1583–1592. doi: 10.1039/D0TA08433F
|
[44] |
Y. Hou, Y.-L. Liang, P.-C. Shi, Y.-B. Huang, R. Cao, Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity, Appl. Catal. B 271 (2020), 118929. doi: 10.1016/j.apcatb.2020.118929
|
[45] |
Q. Fan, P. Hou, C. Choi, T.S. Wu, S. Hong, F. Li, Y.L. Soo, P. Kang, Y. Jung, Z. Sun, Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2, Adv. Energy Mater. 10 (2019) 1903068.
|
[46] |
F. Zhao, Y. Shi, L. Pan, G. Yu, Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications, Acc. Chem. Res. 50 (2017) 1734–1743. doi: 10.1021/acs.accounts.7b00191
|
[47] |
X. Zhou, Y. Guo, F. Zhao, G. Yu, Hydrogels as an emerging material platform for solar water purification, Acc. Chem. Res. 52 (2019) 3244–3253. doi: 10.1021/acs.accounts.9b00455
|
[48] |
Z. Fang, P. Li, G Yu Gel, Electrocatalysts: An emerging material platform for electrochemical energy conversion, Adv. Mater. 32 (2020) e2003191. doi: 10.1002/adma.202003191
|
[49] |
X. Ma, Y. Lou, X.-B. Chen, Z. Shi, Y. Xu, Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose, Chem. Eng. J. 356 (2019) 227–235. doi: 10.1016/j.cej.2018.09.034
|
[50] |
C. Tan, M.C. Lee, M. Arshadi, M. Azizi, A. Abbaspourrad, A spiderweb-like metalorganic framework multifunctional foam, Angew. Chem. Int. Ed. 59 (2020) 9506–9513. doi: 10.1002/anie.201916211
|
[51] |
C. Wang, J. Kim, J. Tang, J. Na, Y.M. Kang, M. Kim, H. Lim, Y. Bando, J. Li, Y. Yamauchi, Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents, Angew. Chem. Int. Ed. 132 (2020) 2082–2086. doi: 10.1002/ange.201913719
|
[52] |
K. Mou, Z. Chen, X. Zhang, M. Jiao, X. Zhang, X. Ge, W. Zhang, L. Liu, Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchoring, Small 15 (2019) e1903668. doi: 10.1002/smll.201903668
|
[53] |
M. Wang, J. Zhang, X. Yi, X. Zhao, B. Liu, X. Liu, Nitrogen-doped hierarchical porous carbon derived from ZIF-8 supported on carbon aerogels with advanced performance for supercapacitor, Appl. Surf. Sci. 507 (2020) 145166. doi: 10.1016/j.apsusc.2019.145166
|
[54] |
X. Xiao, Y. Xu, X. Lv, J. Xie, J. Liu, C. Yu, Electrochemical CO2 reduction on copper nanoparticles-dispersed carbon aerogels, J. Colloid Interface Sci. 545 (2019) 1–7. doi: 10.1016/j.jcis.2019.03.005
|
[55] |
H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu, C. He, Carbon Dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities, Nat. Commun. 11 (2020) 593. doi: 10.1038/s41467-020-14402-0
|
[56] |
H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production, Angew. Chem. Int. Ed. 54 (2015) 14031–14035. doi: 10.1002/anie.201507381
|
[57] |
Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions, Adv. Mater. 28 (2016) 9532–9538. doi: 10.1002/adma.201602912
|
[58] |
J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nat. Nanotechnol. 10 (2015) 444–452. doi: 10.1038/nnano.2015.48
|
[59] |
Q. Hu, G. Li, X. Liu, B. Zhu, X. Chai, Q. Zhang, J. Liu, C. He, Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation, Angew. Chem. Int. Ed. 58 (2019) 4318–4322. doi: 10.1002/anie.201900109
|
[60] |
R.-X. Yang, Y.-R. Wang, G.-K. Gao, L. Chen, Y. Chen, S.-L. Li, Y.-Q. Lan, Selfassembly of hydroxyl metal-organic polyhedra and polymer into Cu-based hollow spheres for product-selective CO2 electroreduction, Small Struct. 2 (2021) 2100012. doi: 10.1002/sstr.202100012
|
[61] |
G. Cai, P. Yan, L. Zhang, H.C. Zhou, H.L. Jiang, Metal-organic framework-based hierarchically porous materials: synthesis and applications, Chem. Rev. 121 (2021) 12278–12326. doi: 10.1021/acs.chemrev.1c00243
|
[62] |
C. He, J. Liang, Y. H. Zou, J. D. Yi, Y. B. Huang, R Cao. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwab157.
|
[63] |
C. He, Q.J. Wu, M.J. Mao, Y.H. Zou, B.T. Liu, Y.B. Huang, R. Cao, Multifunctional gold nanoparticles@Imidazolium-based cationic covalent triazine frameworks for efficient tandem reactions, CCS Chem. 2 (2020) 2368–2380.
|
[64] |
C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang, X. Bao, Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction, Energy Environ. Sci. 11 (2018) 1204–1210. doi: 10.1039/C8EE00133B
|
[65] |
Y.S. Wei, M. Zhang, R. Zou, Q. Xu, Metal-organic framework-based catalysts with single metal sites, Chem. Rev. 120 (2020) 12089–12174. doi: 10.1021/acs.chemrev.9b00757
|
[66] |
J.D. Yi, M.D. Zhang, Y. Hou, Y.B. Huang, R. Cao, N-doped carbon aerogel derived from a metal-organic framework foam as an efficient electrocatalyst for oxygen reduction, Chem. Asian J. 14 (2019) 3642–3647. doi: 10.1002/asia.201900727
|
[67] |
Y. Zhang, X. Wang, S. Zheng, B. Yang, Z. Li, J. Lu, Q. Zhang, N.M. Adli, L. Lei, G. Wu, Y. Hou, Hierarchical cross-linked carbon aerogels with transition metalnitrogen sites for highly efficient industrial-level CO2 electroreduction, Adv. Funct. Mater. 31 (2021) 2104377. doi: 10.1002/adfm.202104377
|
[68] |
M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47–99. doi: 10.1016/j.physrep.2004.10.006
|
[69] |
H.B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H.M. Chen, C.M. Li, T. Zhang, B. Liu, Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction, Nat. Energy 3 (2018) 140–147. doi: 10.1038/s41560-017-0078-8
|
[70] |
J.D. Yi, D.H. Si, R. Xie, Q. Yin, M.D. Zhang, Q. Wu, G.L. Chai, Y.B. Huang, R. Cao, Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2, Angew. Chem. Int. Ed. 60 (2021) 17108–17114. doi: 10.1002/anie.202104564
|
[71] |
H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, D. Makarov, E. Zschech, E. Brunner, I.M. Weidinger, J. Zhang, A.V. Krasheninnikov, S. Kaskel, R. Dong, X. Feng, Synergistic electroreduction of carbon Dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks, Nat. Commun. 11 (2020) 1409. doi: 10.1038/s41467-020-15141-y
|
[72] |
S. Zhu, B. Jiang, W.B. Cai, M. Shao, Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces, J. Am. Chem. Soc. 139 (2017) 15664–15667. doi: 10.1021/jacs.7b10462
|
[73] |
N. Heidary, K.H. Ly, N. Kornienko, Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy, Nano Lett. 19 (2019) 4817–4826. doi: 10.1021/acs.nanolett.9b01582
|
[74] |
S. Zhu, T. Li, W.-B. Cai, M. Shao, CO2 electrochemical reduction as probed through infrared spectroscopy, ACS Energy Lett. 4 (2019) 682–689. doi: 10.1021/acsenergylett.8b02525
|