Volume 2 Issue 3
May  2022
Turn off MathJax
Article Contents
Guo Hui, Si Duan-Hui, Zhu Hong-Jing, Li Qiu-Xia, Huang Yuan-Biao, Cao Rong. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities[J]. eScience, 2022, 2(3): 295-303. doi: 10.1016/j.esci.2022.03.007
Citation: Guo Hui, Si Duan-Hui, Zhu Hong-Jing, Li Qiu-Xia, Huang Yuan-Biao, Cao Rong. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities[J]. eScience, 2022, 2(3): 295-303. doi: 10.1016/j.esci.2022.03.007

Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities

doi: 10.1016/j.esci.2022.03.007
More Information
  • Corresponding author: E-mail address: ybhuang@fjirsm.ac.cn (Y.-B. Huang); rcao@fjirsm.ac.cn (R. Cao)
  • Received Date: 2021-12-30
  • Revised Date: 2022-02-25
  • Accepted Date: 2022-03-31
  • Available Online: 2022-04-06
  • Finding highly efficient electrocatalysts for the CO2 electroreduction reactions (CO2RR) that have high selectivity and appreciable current density to meet commercial application standards remains a challenge. Because their reduction potentials are similar to that of the associated competitive hydrogen evolution reaction and the CO2 activation kinetics are sluggish. Although single-atom catalysts (SACs) with high atom efficiency are one class of promising candidates for the CO2RR to produce CO, single-atom active sites supported on microporous carbons are not fully exposed to substrates and thus lead to low current density. Carbon aerogels with interconnected channels and macropores can facilitate mass transport. But few reports describe utilizing them as supports to anchor SACs for efficient electrocatalysis. Herein, N-doped carbon aerogels supporting Ni single atomic catalyst sites (denoted as Ni-NCA-X, X ​= ​10, 20) were fabricated by pyrolyzing Ni/Zn bimetallic zeolitic imidazolate framework (Ni/Zn-ZIF-8)/carboxymethylcellulose composite gels. Owing to abundant hierarchical micro-, meso-, and macropores and high CO2 adsorption, the Ni single active sites in the optimal Ni-NCA-10 were readily accessible for the electrolyte and CO2 molecules and thus achieved an industrial-level CO partial current density of 226 ​mA ​cm−2, a high CO Faradaic efficiency of 95.6% at −1.0 ​V vs. the reversible hydrogen electrode, and a large turnover frequency of 271810 h−1 in a flow-cell reactor at −1.0 ​V. Such excellent CO2RR performance makes Ni-NCA-10 a rare state-of-the-art electrocatalyst for CO2-to-CO conversion. This work provides an effective strategy for designing highly efficient electrocatalysts toward the CO2RR to achieve industrial current density via anchoring single-atom sites on carbon aerogels.
  • ● Ni-NCA have abundant hierarchical pores and high CO2 adsorption uptakes, making the Ni-NCA excellent catalyst for the CO2RR.
    ● The Ni-NCA achieve an industrial level jCO of 226 mA cm-2, high FECO of 95.6% and large turnover frequency (TOF) of 271810 h-1 in a flow-cell reactor at -1.0 V.
    ● Ni single-atom sites supported on carbon aerogel catalysts (Ni-NCA) were fabricated by pyrolysis of Ni/Zn-ZIF-8/CMC.
  • loading
  • eScience-2-3-295.docx
  • [1]
    J. Liang, Q. Wu, Y.B. Huang, R. Cao, Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis, Energy Chem. 3 (2021) 100064. doi: 10.1016/j.enchem.2021.100064
    [2]
    Y.H. Zou, Q.J. Wu, Q. Yin, Y.B. Huang, R. Cao, Self-assembly of imidazolium-functionalized Zr-based metal-organic polyhedra for catalytic conversion of CO2 into cyclic carbonates, Inorg. Chem. 60 (2021) 2112–2116. doi: 10.1021/acs.inorgchem.0c01199
    [3]
    S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C.P. Berlinguette, Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell, Science 365 (2019) 367–369. doi: 10.1126/science.aax4608
    [4]
    D. Gao, R.M. Arán-Ais, H.S. Jeon, B.R. Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products, Nat. Catal. 2 (2019) 198–210. doi: 10.1038/s41929-019-0235-5
    [5]
    A. Cherevotan, J. Raj, L. Dheer, S. Roy, S. Sarkar, R. Das, C.P. Vinod, S. Xu, P. Wells, U.V. Waghmare, S.C. Peter, Operando generated ordered heterogeneous catalyst for the selective conversion of CO2 to methanol, ACS Energy Lett. 6 (2021) 509–516. doi: 10.1021/acsenergylett.0c02614
    [6]
    Y. Mun, S. Lee, A. Cho, S. Kim, J.W. Han, J. Lee, Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO, Appl. Catal. B 246 (2019) 82–88. doi: 10.1016/j.apcatb.2019.01.021
    [7]
    J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction, Nat. Commun. 11 (2020) 4341. doi: 10.1038/s41467-020-18143-y
    [8]
    C. Zhao, G. Luo, X. Liu, W. Zhang, Z. Li, Q. Xu, Q. Zhang, H. Wang, D. Li, F. Zhou, Y. Qu, X. Han, Z. Zhu, G. Wu, J. Wang, J. Zhu, T. Yao, Y. Li, H.J.M. Bouwmeester, Y. Wu, In situ topotactic transformation of an interstitial alloy for CO electroreduction, Adv. Mater. 32 (2020) e2002382. doi: 10.1002/adma.202002382
    [9]
    X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction, Angew. Chem. Int. Ed. 57 (2018) 2427–2431. doi: 10.1002/anie.201712221
    [10]
    D. Karapinar, C.E. Creissen, J.G. Rivera de la Cruz, M.W. Schreiber, M. Fontecave, Electrochemical CO2 reduction to ethanol with copper-based catalysts, ACS Energy Lett. 6 (2021) 694–706. doi: 10.1021/acsenergylett.0c02610
    [11]
    F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity, Angew. Chem. Int. Ed. 56 (2017) 505–509. doi: 10.1002/anie.201608279
    [12]
    W. Zhu, S. Kattel, F. Jiao, J.G. Chen, Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra, Adv. Energy Mater. 9 (2019) 1802840. doi: 10.1002/aenm.201802840
    [13]
    Y.C. Li, G. Lee, T. Yuan, Y. Wang, D.-H. Nam, Z. Wang, F.P. García de Arquer, Y. Lum, C.-T. Dinh, O. Voznyy, E.H. Sargent, CO2 electroreduction from carbonate electrolyte, ACS Energy Lett. 4 (2019) 1427–1431. doi: 10.1021/acsenergylett.9b00975
    [14]
    Y. Peng, L. Wang, Q. Luo, Y. Cao, Y. Dai, Z. Li, H. Li, X. Zheng, W. Yan, J. Yang, J. Zeng, Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol, Inside Chem. 4 (2018) 613–625.
    [15]
    D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mater. 16 (2017) 220–224. doi: 10.1038/nmat4766
    [16]
    D.L. Meng, M.D. Zhang, D.H. Si, M.J. Mao, Y. Hou, Y.B. Huang, R. Cao, Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts, Angew. Chem. Int. Ed. 60 (2021) 25485–25492. doi: 10.1002/anie.202111136
    [17]
    Q. Wu, M.J. Mao, Q.J. Wu, J. Liang, Y.B. Huang, R. Cao, Construction of donoracceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction, Small 17 (2021) 2004933. doi: 10.1002/smll.202004933
    [18]
    Q. Wu, R.-K. Xie, M.-J. Mao, G.-L. Chai, J.-D. Yi, S.-S. Zhao, Y.-B. Huang, R. Cao, Integration of strong electron transporter tetrathiafulvalene into metalloporphyrinbased covalent organic framework for highly efficient electroreduction of CO2, ACS Energy Lett. 5 (2020) 1005–1012. doi: 10.1021/acsenergylett.9b02756
    [19]
    X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G.E. Sterbinsky, Q. Ma, Y.-G. Wang, Z. Feng, J. Li, H. Dai, Y. Liang, Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction, Nat. Energy 5 (2020) 684–692. doi: 10.1038/s41560-020-0667-9
    [20]
    X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites, J. Am. Chem. Soc. 143 (2021) 7242–7246. doi: 10.1021/jacs.1c01466
    [21]
    T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, H. Wang, Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst, Joule 3 (2019) 265–278. doi: 10.1016/j.joule.2018.10.015
    [22]
    C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu, D. He, D. Xi, Q. Zhang, T. Yuan, Y. Qu, J. Yang, F. Zhou, Z. Yang, X. Wang, J. Wang, J. Luo, Y. Li, H. Duan, Y. Wu, Y. Li, Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction, Joule 3 (2019) 584–594. doi: 10.1016/j.joule.2018.11.008
    [23]
    L. Jiao, J. Zhu, Y. Zhang, W. Yang, S. Zhou, A. Li, C. Xie, X. Zheng, W. Zhou, S.H. Yu, H.L. Jiang, Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction, J. Am. Chem. Soc. 143 (2021) 19417–19424. doi: 10.1021/jacs.1c08050
    [24]
    J.D. Yi, R. Xie, Z.L. Xie, G.L. Chai, T.F. Liu, R.P. Chen, Y.B. Huang, R. Cao, Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding, Angew. Chem. Int. Ed. 59 (2020) 23641–23648. doi: 10.1002/anie.202010601
    [25]
    M.-D. Zhang, D.-H. Si, J.-D. Yi, Q. Yin, Y.-B. Huang, R. Cao, Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon Dioxide reduction reaction, Sci. China Chem. 64 (2021) 1332–1339.
    [26]
    S. Wei, H. Zou, W. Rong, F. Zhang, Y. Ji, L. Duan, Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in A wide operating potential window, Appl. Catal. B 284 (2021) 119739. doi: 10.1016/j.apcatb.2020.119739
    [27]
    Y.N. Gong, L. Jiao, Y. Qian, C.Y. Pan, L. Zheng, X. Cai, B. Liu, S.H. Yu, H.L. Jiang, Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction, Angew. Chem. Int. Ed. 59 (2020) 2705–2709. doi: 10.1002/anie.201914977
    [28]
    Q. Wu, J. Liang, Z.-L. Xie, Y.-B. Huang, R. Cao, Spatial sites separation strategy to fabricate atomically isolated nickel catalysts for efficient CO2 electroreduction, ACS Mater. Lett. 3 (2021) 454–461. doi: 10.1021/acsmaterialslett.1c00090
    [29]
    Y. Hou, Y.-B. Huang, Y.-L. Liang, G.-L. Chai, J.-D. Yi, T. Zhang, K.-T. Zang, J. Luo, R. Xu, H. Lin, S.-Y. Zhang, H.-M. Wang, R. Cao, Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2, CCS Chem. 1 (2019) 384–395. doi: 10.31635/ccschem.019.20190011
    [30]
    H. Yang, Y. Liu, X. Liu, X. Wang, H. Tian, G.I.N. Waterhouse, P.E. Kruger, S.G. Telfer, S. Ma, Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis, eScience. https://doi.org/10.1016/j.esci.2022.02.005.
    [31]
    K. Jiang, S. Siahrostami, A.J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.-B. Cai, D. Bell, K. Chan, J.K. Nørskov, Y. Cui, H. Wang, Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis, Inside Chem. 3 (2017) 950–960.
    [32]
    X. Rong, H.J. Wang, X.L. Lu, R. Si, T.B. Lu, Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction, Angew. Chem. Int. Ed. 59 (2020) 1961–1965. doi: 10.1002/anie.201912458
    [33]
    M. Zhang, T.-S. Wu, S. Hong, Q. Fan, Y.-L. Soo, J. Masa, J. Qiu, Z. Sun, Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance, ACS Sustain. Chem. Eng. 7 (2019) 15030–15035. doi: 10.1021/acssuschemeng.9b03502
    [34]
    X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction, J. Am. Chem. Soc. 139 (2017) 14889–14892. doi: 10.1021/jacs.7b09074
    [35]
    L. Jiao, W. Yang, G. Wan, R. Zhang, X. Zheng, H. Zhou, S.H. Yu, H.L. Jiang, Singleatom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures, Angew. Chem. Int. Ed. 59 (2020) 20589–20595. doi: 10.1002/anie.202008787
    [36]
    Y. Cheng, S. Zhao, H. Li, S. He, J.-P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M.F. Chisholm, S.-Z. Yang, C. Liu, J.G. Chen, S.P. Jiang, Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2, Appl. Catal. B 243 (2019) 294–303. doi: 10.1016/j.apcatb.2018.10.046
    [37]
    K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction, Energy Environ. Sci. 11 (2018) 893–903. doi: 10.1039/C7EE03245E
    [38]
    M. Wang, B. Zhang, J. Ding, N. Xu, M.T. Bernards, Y. He, Y. Shi, Three-dimensional nitrogen-doped graphene aerogel-supported MnO nanoparticles as efficient electrocatalysts for CO2 reduction to CO, ACS Sustain. Chem. Eng. 8 (2020) 4983–4994. doi: 10.1021/acssuschemeng.0c01194
    [39]
    K. Ye, G. Zhang, X.-Y. Ma, C. Deng, X. Huang, C. Yuan, G. Meng, W.-B. Cai, K. Jiang, Resolving local reaction environment toward an optimized CO2-to-CO conversion performance, Energy Environ. Sci. 15 (2022) 749–759. doi: 10.1039/D1EE02966E
    [40]
    M. Kuang, A. Guan, Z. Gu, P. Han, L. Qian, G. Zheng, Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion, Nano Res. 12 (2019) 2324–2329. doi: 10.1007/s12274-019-2396-6
    [41]
    S.-F. Tang, X.-L. Lu, C. Zhang, Z.-W. Wei, R. Si, T.-B. Lu, Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate, Sci. Bull. 66 (2021) 1533–1541. doi: 10.1016/j.scib.2021.03.020
    [42]
    M. Li, H. Wang, W. Luo, P.C. Sherrell, J. Chen, J. Yang, Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction, Adv. Mater. 32 (2020), e2001848. doi: 10.1002/adma.202001848
    [43]
    S. Li, M. Ceccato, X. Lu, S. Frank, N. Lock, A. Roldan, X.-M. Hu, T. Skrydstrup, K. Daasbjerg, Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO2 reduction, J. Mater. Chem. A 9 (2021) 1583–1592. doi: 10.1039/D0TA08433F
    [44]
    Y. Hou, Y.-L. Liang, P.-C. Shi, Y.-B. Huang, R. Cao, Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity, Appl. Catal. B 271 (2020), 118929. doi: 10.1016/j.apcatb.2020.118929
    [45]
    Q. Fan, P. Hou, C. Choi, T.S. Wu, S. Hong, F. Li, Y.L. Soo, P. Kang, Y. Jung, Z. Sun, Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2, Adv. Energy Mater. 10 (2019) 1903068.
    [46]
    F. Zhao, Y. Shi, L. Pan, G. Yu, Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications, Acc. Chem. Res. 50 (2017) 1734–1743. doi: 10.1021/acs.accounts.7b00191
    [47]
    X. Zhou, Y. Guo, F. Zhao, G. Yu, Hydrogels as an emerging material platform for solar water purification, Acc. Chem. Res. 52 (2019) 3244–3253. doi: 10.1021/acs.accounts.9b00455
    [48]
    Z. Fang, P. Li, G Yu Gel, Electrocatalysts: An emerging material platform for electrochemical energy conversion, Adv. Mater. 32 (2020) e2003191. doi: 10.1002/adma.202003191
    [49]
    X. Ma, Y. Lou, X.-B. Chen, Z. Shi, Y. Xu, Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose, Chem. Eng. J. 356 (2019) 227–235. doi: 10.1016/j.cej.2018.09.034
    [50]
    C. Tan, M.C. Lee, M. Arshadi, M. Azizi, A. Abbaspourrad, A spiderweb-like metalorganic framework multifunctional foam, Angew. Chem. Int. Ed. 59 (2020) 9506–9513. doi: 10.1002/anie.201916211
    [51]
    C. Wang, J. Kim, J. Tang, J. Na, Y.M. Kang, M. Kim, H. Lim, Y. Bando, J. Li, Y. Yamauchi, Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents, Angew. Chem. Int. Ed. 132 (2020) 2082–2086. doi: 10.1002/ange.201913719
    [52]
    K. Mou, Z. Chen, X. Zhang, M. Jiao, X. Zhang, X. Ge, W. Zhang, L. Liu, Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchoring, Small 15 (2019) e1903668. doi: 10.1002/smll.201903668
    [53]
    M. Wang, J. Zhang, X. Yi, X. Zhao, B. Liu, X. Liu, Nitrogen-doped hierarchical porous carbon derived from ZIF-8 supported on carbon aerogels with advanced performance for supercapacitor, Appl. Surf. Sci. 507 (2020) 145166. doi: 10.1016/j.apsusc.2019.145166
    [54]
    X. Xiao, Y. Xu, X. Lv, J. Xie, J. Liu, C. Yu, Electrochemical CO2 reduction on copper nanoparticles-dispersed carbon aerogels, J. Colloid Interface Sci. 545 (2019) 1–7. doi: 10.1016/j.jcis.2019.03.005
    [55]
    H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu, C. He, Carbon Dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities, Nat. Commun. 11 (2020) 593. doi: 10.1038/s41467-020-14402-0
    [56]
    H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production, Angew. Chem. Int. Ed. 54 (2015) 14031–14035. doi: 10.1002/anie.201507381
    [57]
    Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions, Adv. Mater. 28 (2016) 9532–9538. doi: 10.1002/adma.201602912
    [58]
    J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nat. Nanotechnol. 10 (2015) 444–452. doi: 10.1038/nnano.2015.48
    [59]
    Q. Hu, G. Li, X. Liu, B. Zhu, X. Chai, Q. Zhang, J. Liu, C. He, Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation, Angew. Chem. Int. Ed. 58 (2019) 4318–4322. doi: 10.1002/anie.201900109
    [60]
    R.-X. Yang, Y.-R. Wang, G.-K. Gao, L. Chen, Y. Chen, S.-L. Li, Y.-Q. Lan, Selfassembly of hydroxyl metal-organic polyhedra and polymer into Cu-based hollow spheres for product-selective CO2 electroreduction, Small Struct. 2 (2021) 2100012. doi: 10.1002/sstr.202100012
    [61]
    G. Cai, P. Yan, L. Zhang, H.C. Zhou, H.L. Jiang, Metal-organic framework-based hierarchically porous materials: synthesis and applications, Chem. Rev. 121 (2021) 12278–12326. doi: 10.1021/acs.chemrev.1c00243
    [62]
    C. He, J. Liang, Y. H. Zou, J. D. Yi, Y. B. Huang, R Cao. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwab157.
    [63]
    C. He, Q.J. Wu, M.J. Mao, Y.H. Zou, B.T. Liu, Y.B. Huang, R. Cao, Multifunctional gold nanoparticles@Imidazolium-based cationic covalent triazine frameworks for efficient tandem reactions, CCS Chem. 2 (2020) 2368–2380.
    [64]
    C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang, X. Bao, Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction, Energy Environ. Sci. 11 (2018) 1204–1210. doi: 10.1039/C8EE00133B
    [65]
    Y.S. Wei, M. Zhang, R. Zou, Q. Xu, Metal-organic framework-based catalysts with single metal sites, Chem. Rev. 120 (2020) 12089–12174. doi: 10.1021/acs.chemrev.9b00757
    [66]
    J.D. Yi, M.D. Zhang, Y. Hou, Y.B. Huang, R. Cao, N-doped carbon aerogel derived from a metal-organic framework foam as an efficient electrocatalyst for oxygen reduction, Chem. Asian J. 14 (2019) 3642–3647. doi: 10.1002/asia.201900727
    [67]
    Y. Zhang, X. Wang, S. Zheng, B. Yang, Z. Li, J. Lu, Q. Zhang, N.M. Adli, L. Lei, G. Wu, Y. Hou, Hierarchical cross-linked carbon aerogels with transition metalnitrogen sites for highly efficient industrial-level CO2 electroreduction, Adv. Funct. Mater. 31 (2021) 2104377. doi: 10.1002/adfm.202104377
    [68]
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47–99. doi: 10.1016/j.physrep.2004.10.006
    [69]
    H.B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H.M. Chen, C.M. Li, T. Zhang, B. Liu, Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction, Nat. Energy 3 (2018) 140–147. doi: 10.1038/s41560-017-0078-8
    [70]
    J.D. Yi, D.H. Si, R. Xie, Q. Yin, M.D. Zhang, Q. Wu, G.L. Chai, Y.B. Huang, R. Cao, Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2, Angew. Chem. Int. Ed. 60 (2021) 17108–17114. doi: 10.1002/anie.202104564
    [71]
    H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, D. Makarov, E. Zschech, E. Brunner, I.M. Weidinger, J. Zhang, A.V. Krasheninnikov, S. Kaskel, R. Dong, X. Feng, Synergistic electroreduction of carbon Dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks, Nat. Commun. 11 (2020) 1409. doi: 10.1038/s41467-020-15141-y
    [72]
    S. Zhu, B. Jiang, W.B. Cai, M. Shao, Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces, J. Am. Chem. Soc. 139 (2017) 15664–15667. doi: 10.1021/jacs.7b10462
    [73]
    N. Heidary, K.H. Ly, N. Kornienko, Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy, Nano Lett. 19 (2019) 4817–4826. doi: 10.1021/acs.nanolett.9b01582
    [74]
    S. Zhu, T. Li, W.-B. Cai, M. Shao, CO2 electrochemical reduction as probed through infrared spectroscopy, ACS Energy Lett. 4 (2019) 682–689. doi: 10.1021/acsenergylett.8b02525
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (221) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return