Volume 2 Issue 3
May  2022
Turn off MathJax
Article Contents
Huang Binbin, Sun Zemin, Sun Genban. Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities[J]. eScience, 2022, 2(3): 243-277. doi: 10.1016/j.esci.2022.04.006
Citation: Huang Binbin, Sun Zemin, Sun Genban. Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities[J]. eScience, 2022, 2(3): 243-277. doi: 10.1016/j.esci.2022.04.006

Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities

doi: 10.1016/j.esci.2022.04.006
More Information
  • Corresponding author: E-mail address: binbinhuang@bnu.edu.cn (B. Huang); gbsun@bnu.edu.cn (G. Sun)
  • Received Date: 2022-03-09
  • Revised Date: 2022-03-29
  • Accepted Date: 2022-04-18
  • Available Online: 2022-04-23
  • Compared with general redox chemistry, electrochemistry using the electron as a potent, controllable, yet traceless alternative to chemical oxidants/reductants usually offers more sustainable options for achieving selective organic synthesis. With its environmentally benign features gradually being uncovered and studied, organic electrosynthesis is currently undergoing a revival and becoming a rapidly growing area within the synthetic community. Among the electrochemical transformations, the anodically enabled ones have been far more extensively exploited than those driven by cathodic reduction, although both approaches are conceptually attractive. To stimulate the development of cathodically enabled organic reactions, this review summarizes the recently developed reductive electrosynthetic protocols, discussing and highlighting reaction features, substrate scopes, applications, and plausible mechanisms to reveal the recent trends in this area. Herein, cathodic reduction-enabled preparative organic transformations are categorized into four types: reduction of (1) unsaturated hydrocarbons, (2) heteroatom-containing carbon-based unsaturated systems, (3) saturated C-hetero or C–C polar/strained bonds, and (4) hetero-hetero linkages. Apart from net electroreductive reactions, a few examples of reductive photo-electrosynthesis as well as paired electrolysis are also introduced, which offer opportunities to overcome certain limitations and improve synthetic versatility. The electrochemically driven, transition metal-catalyzed reductive cross-couplings that have been comprehensively discussed in several other recent reviews are not included here.
  • ● Perspectives on the current trends, challenges, and opportunities in cathodic reduction-enabled organic electrosynthesis.
    ● Comprehensive summary of the advancements made in the field of reductive organic electrosynthesis since 2017.
    ● Suggestions for the development of efficient, sustainable, and practical reductive protocols in organic electrosynthesis.
  • loading
  • [1]
    J.B. Sperry, D.L. Wright, The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules, Chem. Soc. Rev. 35 (2006) 605–621. doi: 10.1039/b512308a
    [2]
    M. Yan, Y. Kawamata, P.S. Baran, Synthetic organic electrochemical methods since 2000: on the verge of a renaissance, Chem. Rev. 117 (2017) 13230–13319. doi: 10.1021/acs.chemrev.7b00397
    [3]
    A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S.R. Waldvogel, Electrifying organic synthesis, Angew. Chem. Int. Ed. 57 (2018) 5594–5619. doi: 10.1002/anie.201711060
    [4]
    B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palmad, R. Vasquez-Medrano, Organic electrosynthesis: a promising green methodology in organic chemistry, Green Chem. 12 (2010) 2099–2119. doi: 10.1039/c0gc00382d
    [5]
    H.J. Schäfer, Contributions of organic electrosynthesis to green chemistry, C. R. Chim. 14 (2011) 745–765. doi: 10.1016/j.crci.2011.01.002
    [6]
    E.J. Horn, B.R. Rosen, P.S. Baran, Synthetic organic electrochemistry: an enabling and innately sustainable method, ACS Cent. Sci. 2 (2016) 302–308. doi: 10.1021/acscentsci.6b00091
    [7]
    R. Francke, R.D. Little, Redox catalysis in organic electrosynthesis: basic principles and recent developments, Chem. Soc. Rev. 43 (2014) 2492–2521. doi: 10.1039/c3cs60464k
    [8]
    G. Hilt, Basic strategies and types of applications in organic electrochemistry, Chemelectrochem 7 (2020) 395–405. doi: 10.1002/celc.201901799
    [9]
    C. Kingston, M.D. Palkowitz, Y. Takahira, J.C. Vantourout, B.K. Peters, Y. Kawamata, P.S. Baran, A survival guide for the "electro-curious", Acc. Chem. Res. 53 (2020) 72–83. doi: 10.1021/acs.accounts.9b00539
    [10]
    C. Schotten, T.P. Nicholls, R.A. Bourne, N. Kapur, B.N. Nguyen, C.E. Willans, Making electrochemistry easily accessible to the synthetic chemist, Green Chem. 22 (2020) 3358–3375. doi: 10.1039/D0GC01247E
    [11]
    N. Sauermann, T.H. Meyer, Y. Qiu, L. Ackermann, Electrocatalytic C-H activation, ACS Catal. 8 (2018) 7086–7103. doi: 10.1021/acscatal.8b01682
    [12]
    R.C. Samanta, T.H. Meyer, I. Siewert, L. Ackermann, Renewable resources for sustainable metallaelectro-catalysed C-H activation, Chem. Sci. 11 (2020) 8657–8670. doi: 10.1039/D0SC03578E
    [13]
    S. Tang, Y. Liu, A. Lei, Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation, Inside Chem. 4 (2018) 27–45.
    [14]
    Y. Yuan, J. Yang, A. Lei, Recent advances in electrochemical oxidative crosscoupling with hydrogen evolution involving radicals, Chem. Soc. Rev. 50 (2021) 10058–10086. doi: 10.1039/D1CS00150G
    [15]
    C. Ma, P. Fang, T.-S. Mei, Recent advances in C-H functionalization using electrochemical transition metal catalysis, ACS Catal. 8 (2018) 7179–7189. doi: 10.1021/acscatal.8b01697
    [16]
    K.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Site-selective C-H functionalization via synergistic use of electrochemistry and transition metal catalysis, Acc. Chem. Res. 53 (2020) 300–310. doi: 10.1021/acs.accounts.9b00603
    [17]
    S.R. Waldvogel, S. Lips, M. Selt, B. Riehl, C.J. Kampf, Electrochemical arylation reaction, Chem. Rev. 118 (2018) 6706–6765. doi: 10.1021/acs.chemrev.8b00233
    [18]
    J.L. Röckl, D. Pollok, R. Franke, S.R. Waldvogel, A decade of electrochemical dehydrogenative C, C-coupling of aryls, Acc. Chem. Res. 53 (2020) 45–61. doi: 10.1021/acs.accounts.9b00511
    [19]
    P. Xiong, H.-C. Xu, Chemistry with electrochemically generated N-centered radicals, Acc. Chem. Res. 52 (2019) 3339–3350. doi: 10.1021/acs.accounts.9b00472
    [20]
    N. Chen, H.-C. Xu, Electrochemical generation of nitrogen-centered radicals for organic synthesis, Green Synth. Catal. 2 (2021) 165–178. doi: 10.1016/j.gresc.2021.03.002
    [21]
    M.D. Kärkäs, Electrochemical strategies for C-H functionalization and C-N bond formation, Chem. Soc. Rev. 47 (2018) 5786–5865. doi: 10.1039/C7CS00619E
    [22]
    J. Chen, S. Lv, S. Tian, Electrochemical transition-metal-catalyzed C-H bond functionalization: electricity as clean surrogates of chemical oxidants, ChemSusChem 12 (2019) 115–132. doi: 10.1002/cssc.201801946
    [23]
    G.S. Sauer, S. Lin, An electrocatalytic approach to the radical difunctionalization of alkenes, ACS Catal. 8 (2018) 5175–5187. doi: 10.1021/acscatal.8b01069
    [24]
    G.M. Martins, B. Shirinfar, T. Hardwick, N. Ahmed, A green approach: vicinal oxidative electrochemical alkene defunctionalization, ChemElectroChem 6 (2019) 1300–1315. doi: 10.1002/celc.201801466
    [25]
    H. Mei, Z. Yin, J. Liu, H. Sun, J. Han, Recent advances on the electrochemical difunctionalization of alkenes/alkynes, Chin. J. Chem. 37 (2019) 292–301.
    [26]
    T. Fuchigami, S. Inagi, Recent advances in electrochemical systems for selective fluorination of organic compounds, Acc. Chem. Res. 53 (2020) 322–334. doi: 10.1021/acs.accounts.9b00520
    [27]
    R. Feng, J.A. Smith, K.D. Moeller, Anodic cyclization reactions and the mechanistic strategies that enable optimization, Acc. Chem. Res. 50 (2017) 2346–2352. doi: 10.1021/acs.accounts.7b00287
    [28]
    S. Liang, C.-C. Zeng, Organic electrochemistry: anodic construction of heterocyclic structures, Curr. Opin. Electrochem. 24 (2021) 31–43.
    [29]
    S.-H. Shi, Y. Liang, N. Jiao, Electrochemical oxidation induced selective C-C bond cleavage, Chem. Rev. 121 (2021) 485–505. doi: 10.1021/acs.chemrev.0c00335
    [30]
    S.H. Park, M. Ju, A.J. Ressler, J. Shim, H. Kim, S. Lin, Reductive electrosynthesis: a new dawn, Aldrichim. Acta 54 (2021) 17–27.
    [31]
    L.F.T. Novaes, J. Liu, Y. Shen, L. Lu, J.M. Meinhardt, S. Lin, Electrocatalysis as an enabling technology for organic synthesis, Chem. Soc. Rev. 50 (2021) 7941–8002. doi: 10.1039/D1CS00223F
    [32]
    C. Ma, P. Fang, Z.-R. Liu, S.-S. Xu, K. Xu, X. Cheng, A. Lei, H.-C. Xu, C. Zeng, T.-S. Mei, Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts, Sci. Bull. 66 (2021) 2412–2429. doi: 10.1016/j.scib.2021.07.011
    [33]
    C.A. Malapit, M.B. Prater, J.R. Cabrera-Pardo, M. Li, T.D. Pham, T.P. McFadden, S. Blank, S.D. Minteer, Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis, Chem. Rev. 122 (2022) 3180–3218. doi: 10.1021/acs.chemrev.1c00614
    [34]
    C. Ma, P. Fang, D. Liu, K.-J. Jiao, P.-S. Gao, H. Qiu, T.-S. Mei, Transition metalcatalyzed organic reactions in undivided electrochemical cells, Chem. Sci. 12 (2021) 12866–12873. doi: 10.1039/D1SC04011A
    [35]
    J.-S. Zhong, Y. Yu, Z. Shi, K.-Y. Ye, An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry, Org. Chem. Front. 8 (2021) 1315–1328. doi: 10.1039/D0QO01227K
    [36]
    X. Cheng, A. Lei, T.-S. Mei, H.-C. Xu, K. Xu, C. Zeng, Recent applications of homogeneous catalysis in electrochemical organic synthesis, CCS Chem. 4 (2022) 1120–1152. doi: 10.31635/ccschem.021.202101451
    [37]
    Z. Shi, N. Li, H.-K. Lu, X. Chen, H. Zheng, Y. Yuan, K.-Y. Ye, Recent advances in the electrochemical hydrogenation of unsaturated hydrocarbons, Curr. Opin. Electrochem. 28 (2021) 100713. doi: 10.1016/j.coelec.2021.100713
    [38]
    B. Huang, Y. Li, C. Yang, W. Xia, Electrochemical 1,4-reduction of α, β-unsaturated ketones with methanol and ammonium chloride as hydrogen sources, Chem. Commun. 55 (2019) 6731–6734. doi: 10.1039/C9CC02368B
    [39]
    Y. Qin, J. Lu, Z. Zou, H. Hong, Y. Li, Y. Li, L. Chen, J. Hu, Y. Huang, Metal-free chemoselective hydrogenation of unsaturated carbon-carbon bonds via cathodic reduction, Org. Chem. Front. 7 (2020) 1817–1822. doi: 10.1039/D0QO00547A
    [40]
    H. Qin, J. Yang, K. Yan, Y. Xue, M. Zhang, X. Sun, J. Wen, H. Wang, Electrochemical-induced hydrogenation of electron-deficient internal olefins and alkynes with CH3OH as hydrogen donor, Adv. Synth. Catal. 363 (2021) 2104–2109. doi: 10.1002/adsc.202100022
    [41]
    J. Li, L. He, X. Liu, X. Cheng, G. Li, Electrochemical hydrogenation with gaseous ammonia, Angew. Chem. Int. Ed. 58 (2019) 1759–1763. doi: 10.1002/anie.201813464
    [42]
    J. Sheng, N. Wu, X. Liu, F. Liu, S. Liu, W. Ding, C. Liu, X. Cheng, Electrochemical allylic hydrodefluorination reaction using gaseous ammonia as hydrogen source, Chin. J. Org. Chem. 40 (2020) 3873–3880. doi: 10.6023/cjoc202006071
    [43]
    X. Zhang, R. Jiang, X. Cheng, Electrochemical tandem olefination and hydrogenation reaction with ammonia, J. Org. Chem. 86 (2021) 16016–16025. doi: 10.1021/acs.joc.1c01024
    [44]
    X. Liu, R. Liu, J. Qiu, X. Cheng, G. Li, Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide, Angew. Chem. Int. Ed. 59 (2020) 13962–13967. doi: 10.1002/anie.202005765
    [45]
    T. Wu, B.H. Nguyen, M.C. Daugherty, K.D. Moeller, Paired electrochemical reactions and the on-site generation of a chemical reagent, Angew. Chem. Int. Ed. 58 (2019) 3562–3565. doi: 10.1002/anie.201900343
    [46]
    T. Wu, K.D. Moeller, Organic electrochemistry: expanding the scope of paired reactions, Angew. Chem. Int. Ed. 60 (2021) 12883–12890. doi: 10.1002/anie.202100193
    [47]
    B. Li, H. Ge, Highly selective electrochemical hydrogenation of alkynes: rapid construction of mechanochromic materials, Sci. Adv. 5 (2019) eaaw2774. doi: 10.1126/sciadv.aaw2774
    [48]
    A. Valiente, P. Martínez-Pardo, G. Kaur, M.J. Johansson, B. Martín-Matute, Electrochemical proton reduction over nickel foam for Z-stereoselective semihydrogenation/deuteration of functionalized alkynes, ChemSusChem 15 (2022) e202102221.
    [49]
    Y. Wu, C. Liu, C. Wang, S. Lu, B. Zhang, Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode, Angew. Chem. Int. Ed. 59 (2020) 21170–21175. doi: 10.1002/anie.202009757
    [50]
    Y. Wu, C. Liu, C. Wang, Y. Yu, Y. Shi, B. Zhang, Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semihydrogenation with water, Nat. Commun. 12 (2021) 3881. doi: 10.1038/s41467-021-24059-y
    [51]
    R.S. Sherbo, R.S. Delima, V.A. Chiykowski, B.P. MacLeod, C.P. Berlinguette, Complete electron economy by pairing electrolysis with hydrogenation, Nat. Catal. 1 (2018) 501–507. doi: 10.1038/s41929-018-0083-8
    [52]
    R.S. Sherbo, A. Kurimoto, C.M. Brown, C.P. Berlinguette, Efficient electrocatalytic hydrogenation with a palladium membrane reactor, J. Am. Chem. Soc. 141 (2019) 7815–7821. doi: 10.1021/jacs.9b01442
    [53]
    A. Kurimoto, R.S. Sherbo, Y. Cao, N.W.X. Loo, C.P. Berlinguette, Electrolytic deuteration of unsaturated bonds without using D2, Nat. Catal. 3 (2020) 719–726. doi: 10.1038/s41929-020-0488-z
    [54]
    R. Matthessen, J. Fransaer, K. Binnemans, D.E. De Vos, Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids, Beilstein J. Org. Chem. 10 (2014) 2484–2500. doi: 10.3762/bjoc.10.260
    [55]
    Z. Yang, Y. Yu, L. Lai, L. Zhou, K. Ye, F.-E. Chen, Carbon dioxide cycle via electrocatalysis: electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids, Green Synth. Catal. 2 (2021) 19–26. doi: 10.1016/j.gresc.2021.01.009
    [56]
    J.-H. Ye, T. Ju, H. Huang, L.-L. Liao, D.-G. Yu, Radical carboxylative cyclizations and carboxylations with CO2, Acc. Chem. Res. 54 (2021) 2518–2531. doi: 10.1021/acs.accounts.1c00135
    [57]
    R. Chen, K. Tian, D. He, T. Gao, G. Yang, J. Xu, H. Chen, D. Wang, Y. Zhang, Carboxylation of α, β-unsaturated ketones by CO2 fixation through photoelectro-chemistry, ACS Appl. Energy Mater. 3 (2020) 5813–5818.
    [58]
    A. Alkayal, V. Tabas, S. Montanaro, I.A. Wright, A.V. Malkov, B.R. Buckley, Harnessing applied potential: selective β-hydrocarboxylation of substituted olefins, J. Am. Chem. Soc. 142 (2020) 1780–1785. doi: 10.1021/jacs.9b13305
    [59]
    Y. Kim, G.D. Park, M. Balamurugan, J. Seo, B.K. Min, K.T. Nam, Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water, Adv. Sci. 7 (2020) 1900137. doi: 10.1002/advs.201900137
    [60]
    A.M. Sheta, M.A. Mashaly, S.B. Said, S.S. Elmorsy, A.V. Malkov, B.R. Buckley, Selective α, δ-hydrocarboxylation of conjugated dienes utilizing CO2 and electrosynthesis, Chem. Sci. 11 (2020) 9109–9114. doi: 10.1039/D0SC03148H
    [61]
    A.M. Sheta, A. Alkayal, M.A. Mashaly, S.B. Said, S.S. Elmorsy, A.V. Malkov, B.R. Buckley, Selective electrosynthetic hydrocarboxylation of α, β-unsaturated esters with carbon dioxide, Angew. Chem. Int. Ed. 60 (2021) 21832–21837. doi: 10.1002/anie.202105490
    [62]
    X.-T. Gao, Z. Zhang, X. Wang, J.-S. Tian, S.-L. Xie, F. Zhou, J. Zhou, Direct electrochemical defluorinative carboxylation of α-CF3 alkenes with carbon dioxide, Chem. Sci. 11 (2020) 10414–10420. doi: 10.1039/D0SC04091F
    [63]
    S.-L. Xie, X.-T. Gao, H.-H. Wu, F. Zhou, J. Zhou, Direct electrochemical defluorinative carboxylation of gem-difluoroalkenes with carbon dioxide, Org. Lett. 22 (2020) 8424–8429. doi: 10.1021/acs.orglett.0c03051
    [64]
    H. Xu, J. Liu, F. Nie, X. Zhao, Z. Jiang, Metal-free hydropyridylation of thioesteractivated alkenes via electroreductive radical coupling, J. Org. Chem. 86 (2021) 16204–16212. doi: 10.1021/acs.joc.1c01526
    [65]
    S. Zhang, L. Li, X. Li, J. Zhang, K. Xu, G. Li, M. Findlater, Electroreductive 4-pyridylation of electron-deficient alkenes with assistance of Ni(acac)2, Org. Lett. 22 (2020) 3570–3575. doi: 10.1021/acs.orglett.0c01014
    [66]
    J. Yang, J. Ma, K. Yan, L. Tian, B. Li, J. Wen, Electrochemical ammonium cationassisted hydropyridylation of ketone-activated alkenes: experimental and computational mechanistic studies, Adv. Synth. Catal. 364 (2022) 845–854. doi: 10.1002/adsc.202101361
    [67]
    S. Zhang, W. Gao, J. Shi, J. Li, F. Li, Y. Liang, X. Zhan, M.-B. Li, Regioselective umpolung addition of dicyanobenzene to α, β-unsaturated alkenes enabled by electrochemical reduction, Org. Chem. Front. 9 (2022) 1261–1266. doi: 10.1039/D1QO01852C
    [68]
    M. Ishifune, H. Yamashita, Y. Kera, N. Yamashita, K. Hirata, H. Murase, S. Kashimura, Electroreduction of aromatics using magnesium electrodes in aprotic solvents containing alcoholic proton donors, Electrochim. Acta 48 (2003) 2405–2409. doi: 10.1016/S0013-4686(03)00259-7
    [69]
    B.K. Peters, K.X. Rodriguez, S.H. Reisberg, S.B. Beil, D.P. Hickey, Y. Kawamata, M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder, T.J. Gorey, S.L. Anderson, M. Neurock, S.D. Minteer, P.S. Baran, Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry, Science 363 (2019) 838–845. doi: 10.1126/science.aav5606
    [70]
    Á. Péter, S. Agasti, O. Knowles, E. Pye, D.J. Procter, Recent advances in the chemistry of ketyl radicals, Chem. Soc. Rev. 50 (2021) 5349–5365. doi: 10.1039/D0CS00358A
    [71]
    I. Fokin, I. Siewert, Chemoselective electrochemical hydrogenation of ketones and aldehydes with a well-defined base-metal catalyst, Chem. Eur. J. 26 (2020) 14137–14143. doi: 10.1002/chem.202002075
    [72]
    H. Wang, Y.-N. Yue, R. Xiong, Y.-T. Liu, L.-R. Yang, Y. Wang, J.-X. Lu, Electrochemically promoted asymmetric transfer hydrogenation of 2, 2, 2-trifluoroacetophenone, J. Org. Chem. 86 (2021) 16158–16161. doi: 10.1021/acs.joc.1c01030
    [73]
    Y. Wang, J. Zhao, T. Qiao, J. Zhang, G. Chen, Tunable system for electrochemical reduction of ketones and phthalimides, Chin. J. Chem. 39 (2021) 3297–3302. doi: 10.1002/cjoc.202100508
    [74]
    Y. Bai, L. Shi, L. Zheng, S. Ning, X. Che, Z. Zhang, J. Xiang, Electroselective and controlled reduction of cyclic imides to hydroxylactams and lactams, Org. Lett. 23 (2021) 2298–2302. doi: 10.1021/acs.orglett.1c00430
    [75]
    Y. Kawamata, K. Hayashi, E. Carlson, S. Shaji, D. Waldmann, B.J. Simmons, J.T. Edwards, C.W. Zapf, M. Saito, P.S. Baran, Chemoselective electrosynthesis using rapid alternating polarity, J. Am. Chem. Soc. 143 (2021) 16580–16588. doi: 10.1021/jacs.1c06572
    [76]
    K. Okamoto, S. Nagahara, Y. Imada, R. Narita, Y. Kitano, K. Chiba, Hydrosilanemediated electrochemical reduction of amides, J. Org. Chem. 86 (2021) 15992–16000. doi: 10.1021/acs.joc.1c00931
    [77]
    N. Kise, H. Nagamine, T. Sakurai, Electroreductive intermolecular coupling of chromones with benzophenones: synthesis of 2-diarylmethylchromones and tetrasubstituted furans, 2019, Eur. J. Org. Chem. (2019) 3662–3676.
    [78]
    N. Kise, Y. Yoshimura, T. Manto, T. Sakurai, Electroreductive intermolecular coupling of 4-quinolones with benzophenones: synthesis of 2-substituted 4-quinolones, ACS Omega 4 (2019) 20080–20093. doi: 10.1021/acsomega.9b03342
    [79]
    P. Hu, B.K. Peters, C.A. Malapit, J.C. Vantourout, P. Wang, J. Li, L. Mele, P.-G. Echeverria, S.D. Minteer, P.S. Baran, Electroreductive olefin-ketone coupling, J. Am. Chem. Soc. 142 (2020) 20979–20986. doi: 10.1021/jacs.0c11214
    [80]
    S. Zhang, L. Li, J. Li, J. Shi, K. Xu, W. Gao, L. Zong, G. Li, M. Findlater, Electrochemical arylation of aldehydes, ketones, and alcohols: from cathodic reduction to convergent paired electrolysis, Angew. Chem. Int. Ed. 60 (2021) 7275–7282. doi: 10.1002/anie.202015230
    [81]
    X. Zhang, C. Yang, H. Gao, L. Wang, L. Guo, W. Xia, Reductive arylation of aliphatic and aromatic aldehydes with cyanoarenes by electrolysis for the synthesis of alcohols, Org. Lett. 23 (2021) 3472–3476. doi: 10.1021/acs.orglett.1c00920
    [82]
    C. Liu, R. Li, W. Zhou, Y. Liang, Y. Shi, R.-L. Li, Y. Ling, Y. Yu, J. Li, B. Zhang, Selectivity origin of organic electrosynthesis controlled by electrode materials: a case study on pinacols, ACS Catal. 11 (2021) 8958–8967. doi: 10.1021/acscatal.1c01382
    [83]
    L. Muchez, D.E. De Vos, M. Kim, Sacrificial anode-free electrosynthesis of α-hydroxy acids via electrocatalytic coupling of carbon dioxide to aromatic alcohols, ACS Sustain. Chem. Eng. 7 (2019) 15860–15864. doi: 10.1021/acssuschemeng.9b04612
    [84]
    Y.-F. Zhang, M. Mellah, Samarium(Ⅱ)-electrocatalyzed chemoselective reductive alkoxylation of phthalimides, Org. Chem. Front. 9 (2022) 1308–1314. doi: 10.1039/D1QO01760H
    [85]
    Y. Liu, L. Xue, B. Shi, F. Bu, D. Wang, L. Lu, R. Shi, A. Lei, Catalyst-free electrochemical decarboxylative cross-coupling of N-hydroxyphthalimide esters and N-heteroarenes towards C(sp3)-C(sp2) bond formation, Chem. Commun. 55 (2019) 14922–14925. doi: 10.1039/C9CC08528A
    [86]
    K. Niu, L. Song, Y. Hao, Y. Liu, Q. Wang, Electrochemical decarboxylative C3 alkylation of quinoxalin-2(1H)-ones with N-hydroxyphthalimide esters, Chem. Commun. 56 (2020) 11673–11676. doi: 10.1039/D0CC05391K
    [87]
    X. Chen, X. Luo, X. Peng, J. Guo, J. Zai, P. Wang, Catalyst-free decarboxylation of carboxylic acids and deoxygenation of alcohols by electro-induced radical formation, Chem. Eur. J. 26 (2020) 3226–3230. doi: 10.1002/chem.201905224
    [88]
    L.M. Barton, L. Chen, D.G. Blackmond, P.S. Baran, Electrochemical borylation of carboxylic acids, Proc. Natl. Acad. Sci. U.S.A. 118 (2021) e2109408118. doi: 10.1073/pnas.2109408118
    [89]
    N. Kise, T. Manto, T. Sakurai, Electroreductive coupling of phthalimides with α, β-unsaturated carbonyl compounds and subsequent acid-catalyzed rearrangement to 4-aminonaphthalen-1-ols: density functional theory study of the acid-catalyzed rearrangement of ketene silyl acetals, J. Org. Chem. 86 (2021) 18232–18246. doi: 10.1021/acs.joc.1c02512
    [90]
    N. Kise, S. Yamamoto, T. Sakurai, Electroreductive coupling of phthalic anhydrides with α, β-unsaturated carbonyl compounds: synthesis of 1,4-dihydroxynaphthalenes, J. Org. Chem. 85 (2020) 13973–13982. doi: 10.1021/acs.joc.0c02000
    [91]
    H. Hong, Z. Zou, G. Liang, S. Pu, J. Hu, L. Chen, Z. Zhu, Y. Li, Y. Huang, Direct electrochemical reductive amination between aldehydes and amines with a H/Ddonor solvent, Org. Biomol. Chem. 18 (2020) 5832–5837. doi: 10.1039/D0OB01163K
    [92]
    D.B. Nemez, B.K. Sidhu, P.K. Giesbrecht, J.D. Braun, D.E. Herbert, Electrochemical hydrogenation of α-ketoesters and benzoxazinones using carbon electrodes and a sustainable Brønsted acid, Org. Chem. Front. 8 (2021) 549–554. doi: 10.1039/D0QO01311K
    [93]
    M. Klein, T. Güthner, J. Sans, F. Thalhammer, S.R. Waldvogel, Sustainable and cost-efficient electro-synthesis of formamidine acetate from cyanamide in aqueous acidic electrolyte, Green Chem. 23 (2021) 3289–3294. doi: 10.1039/D1GC00700A
    [94]
    J. Wen, H. Qin, K. Yan, X. Yang, X. Sun, W. Wei, J. Yang, H. Wang, Electrochemical-induced transfer hydrogenation of imidazopyridines with secondary amine as hydrogen donor, Org. Lett. 22 (2020) 8824–8828. doi: 10.1021/acs.orglett.0c03205
    [95]
    M. Li, C. Liu, Y. Huang, S. Han, B. Zhang, Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode, Chin. J. Catal. 42 (2021) 1983–1991. doi: 10.1016/S1872-2067(21)63834-2
    [96]
    D. Lehnherr, Y. Lam, M.C. Nicastri, J. Liu, J.A. Newman, E.L. Regalado, D.A. DiRocco, T. Rovis, Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer, J. Am. Chem. Soc. 142 (2020) 468–478. doi: 10.1021/jacs.9b10870
    [97]
    Y. Qu, C. Tsuneishi, H. Tateno, Y. Matsumura, M. Atobe, Green synthesis of α-amino acids by electrochemical carboxylation of imines in a flow microreactor, React. Chem. Eng. 2 (2017) 871–875. doi: 10.1039/C7RE00149E
    [98]
    Y. Naito, Y. Nakamura, N. Shida, H. Senboku, K. Tanaka, M. Atobe, Integrated flow synthesis of α-amino acids by in situ generation of aldimines and subsequent electrochemical carboxylationm, J. Org. Chem. 86 (2021) 15953–15960. doi: 10.1021/acs.joc.1c00821
    [99]
    X. Liu, C. Liu, X. Cheng, Ring-contraction of hantzsch esters and their derivatives to pyrroles via electrochemical extrusion of ethyl acetate out of aromatic rings, Green Chem. 23 (2021) 3468–3473. doi: 10.1039/D1GC00487E
    [100]
    F. Alonso, I.P. Beletskaya, M. Yus, Metal-mediated reductive hydrodehalogenation of organic halides, Chem. Rev. 102 (2002) 4009–4091. doi: 10.1021/cr0102967
    [101]
    E.T. Martin, C.M. McGuire, M.S. Mubarak, D.G. Peters, Electroreductive remediation of halogenated environmental pollutants, Chem. Rev. 116 (2016) 15198–15234. doi: 10.1021/acs.chemrev.6b00531
    [102]
    J. Ke, H. Wang, L. Zhou, C. Mou, J. Zhang, L. Pan, Y.R. Chi, Hydrodehalogenation of aryl halides through direct electrolysis, Chem. Eur. J. 25 (2019) 6911–6914. doi: 10.1002/chem.201901082
    [103]
    B. Huang, L. Guo, W. Xia, A facile and versatile electro-reductive system for hydrodefunctionalization under ambient conditions, Green Chem. 23 (2021) 2095–2103. doi: 10.1039/D1GC00317H
    [104]
    C. Liu, S. Han, M. Li, X. Chong, B. Zhang, Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode, Angew. Chem. Int. Ed. 59 (2020) 18527–18531. doi: 10.1002/anie.202009155
    [105]
    L. Lu, H. Li, Y. Zheng, F. Bu, A. Lei, Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides, CCS Chem. 2 (2020) 2669–2675.
    [106]
    J.R. Box, A.P. Atkins, A.J.J. Lennox, Direct electrochemical hydrodefluorination of trifluoromethylketones enabled by non-protic conditions, Chem. Sci. 12 (2021) 10252–10258. doi: 10.1039/D1SC01574E
    [107]
    Z. Zhou, Y. Yuan, Y. Cao, J. Qiao, A. Yao, J. Zhao, W. Zuo, W. Chen, A. Lei, Synergy of anodic oxidation and cathodic reduction leads to electrochemical C-H halogenation, Chin. J. Chem. 37 (2019) 611–615. doi: 10.1002/cjoc.201900091
    [108]
    X. Meng, Y. Zhang, J. Luo, F. Wang, X. Cao, S. Huang, Electrochemical oxidative oxydihalogenation of alkynes for the synthesis of α, α-dihaloketones, Org. Lett. 22 (2020) 1169–1174. doi: 10.1021/acs.orglett.0c00052
    [109]
    J. Hong, Q. Liu, F. Li, G. Bai, G. Liu, M. Li, O.S. Nayal, X. Fu, F. Mo, Electrochemical radical borylation of aryl iodides, Chin. J. Chem. 37 (2019) 347–351. doi: 10.1002/cjoc.201900001
    [110]
    B. Wang, P. Peng, W. Ma, Z. Liu, C. Huang, Y. Cao, P. Hu, X. Qi, Q. Lu, Electrochemical borylation of alkyl halides: fast, scalable access to alkyl boronic esters, J. Am. Chem. Soc. 143 (2021) 12985–12991. doi: 10.1021/jacs.1c06473
    [111]
    J.P. Barham, B. König, Synthetic photoelectrochemistry, Angew. Chem. Int. Ed. 59 (2020) 11732–11747. doi: 10.1002/anie.201913767
    [112]
    J. Liu, L. Lu, D. Wood, S. Lin, New redox strategies in organic synthesis by means of electrochemistry and photochemistry, ACS Cent. Sci. 6 (2020) 1317–1340. doi: 10.1021/acscentsci.0c00549
    [113]
    H. Kim, H. Kim, T.H. Lambert, S. Lin, Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potentials, J. Am. Chem. Soc. 142 (2020) 2087–2092. doi: 10.1021/jacs.9b10678
    [114]
    N.G.W. Cowper, C.P. Chernowsky, O.P. Williams, Z.K. Wickens, Potent reductants via electron-primed photoredox catalysis: unlocking aryl chlorides for radical coupling, J. Am. Chem. Soc. 142 (2020) 2093–2099. doi: 10.1021/jacs.9b12328
    [115]
    N. Corbin, D.-T. Yang, N. Lazouski, K. Steinberg, K. Manthiram, Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes, Chem. Sci. 12 (2021) 12365–12376. doi: 10.1039/D1SC02413B
    [116]
    S. Bazzi, E. Schulz, M. Mellah, Electrogenerated Sm(Ⅱ)-catalyzed CO2 activation for carboxylation of benzyl halides, Org. Lett. 21 (2019) 10033–10037. doi: 10.1021/acs.orglett.9b03927
    [117]
    S. Bazzi, G. Le Duc, E. Schulz, C. Gosmini, M. Mellah, CO2 activation by electrogenerated divalent samarium for aryl halide carboxylation, Org. Biomol. Chem. 17 (2019) 8546–8550. doi: 10.1039/C9OB01752F
    [118]
    S. Mena, J. Sanchez, G. Guirado, Electrocarboxylation of 1-chloro-(4-isobutylphenyl) ethane with a silver cathode in ionic liquids: an environmentally benign and efficient way to synthesize Ibuprofen, RSC Adv. 9 (2019) 15115–15123. doi: 10.1039/C9RA01781J
    [119]
    S. Mena, S. Santiago, I. Gallardo, G. Guirado, Sustainable and efficient electrosynthesis of naproxen using carbon dioxide and ionic liquids, Chemosphere 245 (2020) 125557. doi: 10.1016/j.chemosphere.2019.125557
    [120]
    D. Li, T.-K. Ma, R.J. Scott, J.D. Wilden, Electrochemical radical reactions of alkyl iodides: a highly efficient, clean, green alternative to tin reagents, Chem. Sci. 11 (2020) 5333–5338. doi: 10.1039/D0SC01694B
    [121]
    T.-K. Ma, D. Li, J.D. Wilden, Mechanistic studies of reactive oxygen species mediated electrochemical radical reactions of alkyl iodides, Chem. Commun. 57 (2021) 8356–8359. doi: 10.1039/D1CC03019A
    [122]
    W. Zhang, S. Lin, Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism, J. Am. Chem. Soc. 142 (2020) 20661–20670. doi: 10.1021/jacs.0c08532
    [123]
    H. Zhang, M. Liang, X. Zhang, M.-K. He, C. Yang, L. Guo, W. Xia, Electrochemical synthesis of functionalized gem-difluoroalkenes with diverse alkyl sources via a defluorinative alkylation process, Org. Chem. Front. 9 (2022) 95–101. doi: 10.1039/D1QO01460A
    [124]
    Y. Liang, F. Lin, Y. Adeli, R. Jin, N. Jiao, Efficient electrocatalysis for the preparation of (hetero)aryl chlorides and vinyl chloride with 1,2-dichloroethane, Angew. Chem. Int. Ed. 58 (2019) 4566–4570. doi: 10.1002/anie.201814570
    [125]
    X. Dong, J.L. Roeckl, S.R. Waldvogel, B. Morandi, Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations, Science 371 (2021) 507–514. doi: 10.1126/science.abf2974
    [126]
    N. Fu, G.S. Sauer, S. Lin, Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources, J. Am. Chem. Soc. 139 (2017) 15548–15553. doi: 10.1021/jacs.7b09388
    [127]
    X.-A. Liang, L. Niu, S. Wang, A. Lei, Electrochemical (3+2) cyclization between amides and olefins, Chem. Catal. 1 (2021) 1055–1064. doi: 10.1016/j.checat.2021.08.004
    [128]
    M. Li, C. Zhang, Y.-Q. Zhou, Y. Liu, N. Zhao, X. Li, L.-J. Gu, Electrochemical intramolecular haloheterocyclization reactions using 1,2-dihaloethanes as halogenating reagents, Tetrahedron Lett. 89 (2022) 153602. doi: 10.1016/j.tetlet.2021.153602
    [129]
    F. Ling, T. Liu, C. Xu, J. He, W. Zhang, C. Ling, L. Liu, W. Zhong, Divergent electrolysis for the controllable coupling of thiols with 1,2-dichloroethane: a mild approach to sulfide and sulfoxide, Green Chem. 24 (2022) 1342–1349. doi: 10.1039/D1GC03440E
    [130]
    M.J. Hossain, T. Ono, K. Wakiya, Y. Hisaeda, A vitamin B12 derivative catalyzed electrochemical trifluoromethylation and perfluoroalkylation of arenes and heteroarenes in organic media, Chem. Commun. 53 (2017) 10878–10881. doi: 10.1039/C7CC06221D
    [131]
    Z. Luo, K. Imamura, Y. Shiota, K. Yoshizawa, Y. Hisaeda, H. Shimakoshi, One-pot synthesis of tertiary amides from organic trichlorides through oxygen atom incorporation from air by convergent paired electrolysis, J. Org. Chem. 86 (2021) 5983–5990. doi: 10.1021/acs.joc.1c00161
    [132]
    M. Moniruzzaman, Y. Yano, T. Ono, K. Imamura, Y. Shiota, K. Yoshizawa, Y. Hisaeda, H. Shimakoshi, Electrochemical synthesis of cyanoformamides from trichloroacetonitrile and secondary amines mediated by the B12 derivative, J. Org. Chem. 86 (2021) 16134–16143. doi: 10.1021/acs.joc.1c00837
    [133]
    M. Lübbesmeyer, D. Leifert, H. Schäfer, A. Studer, Electrochemical initiation of electron-catalyzed phenanthridine synthesis by trifluoromethylation of isonitriles, Chem. Commun. 54 (2018) 2240–2243. doi: 10.1039/C7CC09302K
    [134]
    C. Yang, G. Magallanes, S. Maldonado, C.R.J. Stephenson, Electro-reductive fragmentation of oxidized lignin models, J. Org. Chem. 86 (2021) 15927–15934. doi: 10.1021/acs.joc.1c00346
    [135]
    H. Senboku, K. Sakai, A. Fukui, Y. Sato, Y. Yamauchi, Efficient synthesis of mandel acetates by electrochemical carboxylation of benzal diacetates, ChemElectroChem 6 (2019) 4158–4164. doi: 10.1002/celc.201900200
    [136]
    C. Huang, W. Ma, X. Zheng, M. Xu, X. Qi, Q. Lu, Epoxide electroreduction, J. Am. Chem. Soc. 144 (2022) 1389–1395. doi: 10.1021/jacs.1c11791
    [137]
    X. Tian, T.A. Karl, S. Reiter, S. Yakubov, R. Vivie-Riedle, B. König, J.P. Barham, Electro-mediated photoredox catalysis for selective C(sp3)-O cleavages of phosphinated alcohols to carbanions, Angew. Chem. Int. Ed. 60 (2021) 20817–20825. doi: 10.1002/anie.202105895
    [138]
    C.P. Chernowsky, A.F. Chmiel, Z.K. Wickens, Electrochemical activation of diverse conventional photoredox catalysts induces potent photoreductant activity, Angew. Chem. Int. Ed. 60 (2021) 21418–21425. doi: 10.1002/anie.202107169
    [139]
    Z. Zou, G. Cai, W. Chen, C. Zou, Y. Li, H. Wu, L. Chen, J. Hu, Y. Li, Y. Huang, Metal-free cascade formation of intermolecular C-N bonds accessing substituted isoindolinones under cathodic reduction, J. Org. Chem. 86 (2021) 15777–15784. doi: 10.1021/acs.joc.1c01845
    [140]
    D.-T. Yang, M. Zhu, Z.J. Schiffer, K. Williams, X. Song, X. Liu, K. Manthiram, Direct electrochemical carboxylation of benzylic C-N bonds with carbon dioxide, ACS Catal. 9 (2019) 4699–4705. doi: 10.1021/acscatal.9b00818
    [141]
    X. Kong, L. Lin, Q. Chen, B. Xu, Radical generation from electroreduction of aryl and benzyl ammonium salts: synthesis of organoboronates, Org. Chem. Front. 8 (2021) 702–707. doi: 10.1039/D0QO00979B
    [142]
    X. Kong, Y. Wang, Y. Chen, X. Chen, L. Lin, Z.-Y. Cao, Cyanation and cyanomethylation of trimethylammonium salts via electrochemical cleavage of C-N bonds, Org. Chem. Front. 9 (2022) 1288–1294. doi: 10.1039/D1QO01858B
    [143]
    Q. Liu, B. Sun, Z. Liu, Y. Kao, B.-W. Dong, S.-D. Jiang, F. Li, G. Liu, Y. Yang, F. Mo, A general electrochemical strategy for the Sandmeyer reaction, Chem. Sci. 9 (2018) 8731–8737. doi: 10.1039/C8SC03346C
    [144]
    P. Wang, Z. Yang, Z. Wang, C. Xu, L. Huang, S. Wang, H. Zhang, A. Lei, Electrochemical arylation of electron-deficient arenes through reductive activation, Angew. Chem. Int. Ed. 58 (2019) 15747–15751. doi: 10.1002/anie.201909600
    [145]
    Y. Jiang, G. Dou, L. Zhang, K. Xu, R.D. Little, C. Zeng, Electrochemical crosscoupling of C(sp2)-H with aryldiazonium salts via a paired electrolysis: an alternative to visible light photoredox-based approach, Adv. Synth. Catal. 361 (2019) 5170–5175. doi: 10.1002/adsc.201901011
    [146]
    J.-S. Zhong, Z.-X. Yang, C.-L. Ding, Y.-F. Huang, Y. Zhao, H. Yan, K.-Y. Ye, Desulfonylative electrocarboxylation with carbon dioxide, J. Org. Chem. 86 (2021) 16162–16170. doi: 10.1021/acs.joc.1c01261
    [147]
    H. Senboku, Y. Minemura, Y. Suzuki, H. Matsuno, M. Takakuwa, Synthesis of N-Boc-α-amino acids from carbon dioxide by electrochemical carboxylation of N-Boc-α-aminosulfones, J. Org. Chem. 86 (2021) 16077–16083. doi: 10.1021/acs.joc.1c01516
    [148]
    X. Zhou, C. Ni, L. Deng, J. Hu, Electrochemical reduction of fluoroalkyl sulfones for radical fluoroalkylation of alkenes, Chem. Commun. 57 (2021) 8750–8753. doi: 10.1039/D1CC03258E
    [149]
    Y. Ouyang, X.-H. Xu, F.-L. Qing, Electrochemical trifluoromethoxylation of (hetero)aromatics with a trifluoromethyl source and oxygen, Angew. Chem. Int. Ed. 61 (2022) e202114048.
    [150]
    Y. Ma, X. Yao, L. Zhang, P. Ni, R. Cheng, J. Ye, Direct arylation of α-amino C(sp3)-H bonds by convergent paired electrolysis, Angew. Chem. Int. Ed. 58 (2019) 16548–16552. doi: 10.1002/anie.201909642
    [151]
    Y. Mo, Z. Lu, G. Rughoobur, P. Patil, N. Gershenfeld, A.I. Akinwande, S.L. Buchwald, K.F. Jensen, Microfluidic electrochemistry for single-electron transfer redox-neutral reactions, Science 368 (2020) 1352–1357. doi: 10.1126/science.aba3823
    [152]
    J. Wen, X. Yang, K. Yan, H. Qin, J. Ma, X. Sun, J. Yang, H. Wang, Electroreductive C3 pyridylation of quinoxalin-2(1H)-ones: an effective way to access bidentate nitrogen ligands, Org. Lett. 23 (2021) 1081–1085. doi: 10.1021/acs.orglett.0c04296
    [153]
    L.-L. Liao, Z.-H. Wang, K.-G. Cao, G.-Q. Sun, W. Zhang, C.-K. Ran, Y. Li, L. Chen, G.-M. Cao, D.-G. Yu, Electrochemical ring-opening dicarboxylation of strained carbon-carbon single bonds with CO2: facile synthesis of diacids and derivatization into polyesters, J. Am. Chem. Soc. 144 (2022) 2062–2068. doi: 10.1021/jacs.1c12071
    [154]
    T. Wirtanen, E. Rodrigo, S.R. Waldvogel, Recent advances in the electrochemical reduction of substrates involving N-O bonds, Adv. Synth. Catal. 362 (2020) 2088–2101. doi: 10.1002/adsc.202000349
    [155]
    Y.-F. Zhang, M. Mellah, Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2, ACS Catal. 7 (2017) 8480–8486. doi: 10.1021/acscatal.7b02940
    [156]
    Y. Ma, S. Wu, S. Jiang, F. Xiao, G.-J. Deng, Electrosynthesis of azobenzenes directly from nitrobenzenes, Chin. J. Chem. 39 (2021) 3334–3338. doi: 10.1002/cjoc.202100470
    [157]
    L. Chang, J. Li, N. Wu, X. Cheng, Chemoselective electrochemical reduction of nitroarenes with gaseous ammonia, Org. Biomol. Chem. 19 (2021) 2468–2472. doi: 10.1039/D1OB00077B
    [158]
    X. Chong, C. Liu, Y. Huang, C. Huang, B. Zhang, Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode, Natl. Sci. Rev. 7 (2020) 285–295. doi: 10.1093/nsr/nwz146
    [159]
    Y. Zhao, C. Liu, C. Wang, X. Chong, B. Zhang, Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4-x Nanosheet cathode, CCS Chem. 2 (2020) 507–515.
    [160]
    S. Wu, X. Huang, H. Zhang, Z. Wei, M. Wang, Efficient electrochemical hydrogenation of nitroaromatics into arylamines on a CuCo2O4 spinel cathode in an alkaline electrolyte, ACS Catal. 12 (2022) 58–65. doi: 10.1021/acscatal.1c03763
    [161]
    X. Sun, Q. Zhu, J. Hu, X. Kang, J. Ma, H. Liu, B. Han, N, N-dimethylation of nitrobenzenes with CO2 and water by electrocatalysis, Chem. Sci. 8 (2017) 5669–5674. doi: 10.1039/C7SC01058C
    [162]
    D. Wang, Z. Wan, H. Zhang, H. Alhumade, H. Yi, A. Lei, Electrochemical reductive arylation of nitroarenes with arylboronic acids, ChemSusChem 14 (2021) 5399–5404. doi: 10.1002/cssc.202101924
    [163]
    E. Rodrigo, S.R. Waldvogel, A very simple one-pot electrosynthesis of nitrones starting from nitro and aldehyde components, Green Chem. 20 (2018) 2013–2017. doi: 10.1039/C8GC00474A
    [164]
    H. Salehzadeh, M.H. Mashhadizadeh, Nitrone synthesis via pair electrochemical coupling of nitro-compounds with benzyl alcohol derivatives, J. Org. Chem. 84 (2019) 9307–9312. doi: 10.1021/acs.joc.9b00736
    [165]
    E. Rodrigo, S.R. Waldvogel, Simple electrochemical reduction of nitrones to amines, Chem. Sci. 10 (2019) 2044–2047. doi: 10.1039/C8SC04337J
    [166]
    S. Hosseini, S.A. Bawel, M.S. Mubarak, D.G. Peters, Rapid and high-yield electrosynthesis of benzisoxazole and some derivatives, ChemElectroChem 6 (2019) 4318–4324. doi: 10.1002/celc.201801321
    [167]
    E. Rodrigo, H. Baunis, E. Suna, S.R. Waldvogel, Simple and scalable electrochemical synthesis of 2, 1-benzisoxazoles and quinoline N-oxides, Chem. Commun. 55 (2019) 12255–12258. doi: 10.1039/C9CC06054E
    [168]
    T. Wirtanen, E. Rodrigo, S.R. Waldvogel, Selective and scalable electrosynthesis of 2H-2-(aryl)-benzo[d]-1, 2, 3-triazoles and their N-oxides by using leaded bronze cathodes, Chem. Eur. J. 26 (2020) 5592–5597. doi: 10.1002/chem.201905874
    [169]
    B. Mokhtari, D. Nematollahi, H. Salehzadeh, Paired electrochemical conversion of nitroarenes to sulfonamides, diarylsulfones and bis(arylsulfonyl)aminophenols, Green Chem. 20 (2018) 1499–1505. doi: 10.1039/C7GC03576D
    [170]
    B. Mokhtari, D. Nematollahi, H. Salehzadeh, A tunable pair electrochemical strategy for the synthesis of new benzenesulfonamide derivatives, Sci. Rep. 9 (2019) 4537. doi: 10.1038/s41598-019-38544-4
    [171]
    P. Xu, H.-C. Xu, Electrochemical deoxygenation of N-heteroaromatic N-oxides, Synlett 30 (2019) 1219–1221. doi: 10.1055/s-0037-1611541
    [172]
    Y. Fukazawa, A.E. Rubtsov, A.V. Malkov, A mild method for electrochemical reduction of heterocyclic N-oxides, Eur. J. Org. Chem. 2020 (2020) 3317–3319. doi: 10.1002/ejoc.202000377
    [173]
    H.-B. Zhao, P. Xu, J. Song, H.-C. Xu, Cathode material determines product selectivity for electrochemical C-H functionalization of biaryl ketoximes, Angew. Chem. Int. Ed. 57 (2018) 15153–15156. doi: 10.1002/anie.201809679
    [174]
    Y. Yuan, M. Jiang, T. Wang, Y. Xiong, J. Li, H. Guo, A. Lei, Synergy of anodic oxidation and cathodic reduction leads to electrochemical deoxygenative C2 arylation of quinoline N-oxides, Chem. Commun. 55 (2019) 11091–11094. doi: 10.1039/C9CC05841A
    [175]
    X. Chang, Q. Zhang, C. Guo, Electrochemical reductive Smiles rearrangement for C-N bond formation, Org. Lett. 21 (2019) 10–13. doi: 10.1021/acs.orglett.8b03178
    [176]
    S. Manabe, C.M. Wong, C.S. Sevov, Direct and scalable electroreduction of triphenylphosphine oxide to triphenylphosphine, J. Am. Chem. Soc. 142 (2020) 3024–3031. doi: 10.1021/jacs.9b12112
    [177]
    B. Chakraborty, A. Kostenko, P.W. Menezes, M. Driess, A systems approach to a one-pot electrochemical Wittig olefination avoiding the use of chemical reductant or sacrificial electrode, Chem. Eur. J. 26 (2020) 11829–11834. doi: 10.1002/chem.202001654
    [178]
    B. Chakraborty, P.W. Menezes, M. Driess, Beyond CO2 reduction: vistas on electrochemical reduction of heavy non-metal oxides with very strong E-O bonds (E = Si, P, S), J. Am. Chem. Soc. 142 (2020) 14772–14788. doi: 10.1021/jacs.0c05862
    [179]
    Z. Kong, C. Pan, M. Li, L. Wen, W. Guo, Scalable electrochemical reduction of sulfoxides to sulfides, Green Chem. 23 (2021) 2773–2777. doi: 10.1039/D1GC00591J
    [180]
    D. Chen, X. Nie, Q. Feng, Y. Zhang, Y. Wang, Q. Wang, L. Huang, S. Huang, S. Liao, Electrochemical oxo-fluorosulfonylation of alkynes under air: facile access to β-keto sulfonyl fluorides, Angew. Chem. Int. Ed. 60 (2021) 27271–27276. doi: 10.1002/anie.202112118
    [181]
    M. Yu, H. Wang, Y. Gao, F. Bu, H. Cong, A. Lei, Manganese-catalyzed chlorosulfonylation of terminal alkene and alkyne via convergent paired electrolysis, Cell Rep. Phys. Sci. 2 (2021) 100476. doi: 10.1016/j.xcrp.2021.100476
    [182]
    S. Rodrigo, C. Um, J.C. Mixdorf, D. Gunasekera, H.M. Nguyen, L. Luo, Alternating current electrolysis for organic electrosynthesis: trifluoromethylation of (hetero) arenes, Org. Lett. 22 (2020) 6719–6723. doi: 10.1021/acs.orglett.0c01906
    [183]
    W. Jud, S. Maljuric, C.O. Kappe, D. Cantillo, Cathodic C-H trifluoromethylation of arenes and heteroarenes enabled by an in situ-generated triflyltriethylammonium complex, Org. Lett. 21 (2019) 7970–7975. doi: 10.1021/acs.orglett.9b02948
    [184]
    Y. Guo, R. Wang, H. Song, Y. Liu, Q. Wang, Electrochemical trifluoromethylation/ cyclization for the synthesis of isoquinoline-1, 3-diones and oxindoles, Chem. Commun. 57 (2021) 8284–8287. doi: 10.1039/D1CC03389A
    [185]
    L. Lu, J.C. Siu, Y. Lai, S. Lin, An electroreductive approach to radical silylation via the activation of strong Si-Cl bond, J. Am. Chem. Soc. 142 (2020) 21272–21278. doi: 10.1021/jacs.0c10899
    [186]
    M.-X. He, Y.-Z. Wu, Y. Yao, Z.-Y. Mo, Y.-M. Pan, H.-T. Tang, Paired electrosynthesis of aromatic azo compounds from aryl diazonium salts with pyrroles or indoles, Adv. Synth. Catal. 363 (2021) 2752–2756. doi: 10.1002/adsc.202001457
    [187]
    D.M. Heard, A.J.J. Lennox, Electrode materials in modern organic electrochemistry, Angew. Chem. Int. Ed. 59 (2020) 18866–18884. doi: 10.1002/anie.202005745
    [188]
    F. Wang, S.S. Stahl, Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electronproton transfer mediators, Acc. Chem. Res. 53 (2020) 561–574. doi: 10.1021/acs.accounts.9b00544
    [189]
    K.-J. Jiao, Z.-M. Li, X.-T. Xu, L.-P. Zhang, Y.-Q. Li, K. Zhang, T.-S. Mei, Palladiumcatalyzed reductive electrocarboxylation of allyl esters with carbon dioxide, Org. Chem. Front. 5 (2018) 2244–2248. doi: 10.1039/C8QO00507A
    [190]
    T.J. DeLano, S.E. Reisman, Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis, ACS Catal. 9 (2019) 6751–6754. doi: 10.1021/acscatal.9b01785
    [191]
    H. Qiu, B. Shuai, Y.-Z. Wang, D. Liu, Y.-G. Chen, P.-S. Gao, H.-X. Ma, S. Chen, T.-S. Mei, Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers, J. Am. Chem. Soc. 142 (2020) 9872–9878. doi: 10.1021/jacs.9b13117
    [192]
    Q. Lin, L. Li, S. Luo, Asymmetric electrochemical catalysis, Chem. Eur. J. 25 (2019) 10033–10044. doi: 10.1002/chem.201901284
    [193]
    X. Chang, Q. Zhang, C. Guo, Asymmetric electrochemical transformations, Angew. Chem. Int. Ed. 59 (2020) 12612–12622. doi: 10.1002/anie.202000016
    [194]
    X. Wang, X. Xu, Z. Wang, P. Fang, T. Mei, Advances in asymmetric organotransition metal-catalyzed electrochemistry, Chin. J. Org. Chem. 40 (2020) 3738–3747. doi: 10.6023/cjoc202003022
    [195]
    K. Yamamoto, M. Kuriyama, O. Onomura, Asymmetric electrosynthesis: recent advances in catalytic transformations, Curr. Opin. Electrochem. 28 (2021) 100714. doi: 10.1016/j.coelec.2021.100714
    [196]
    Y. Yuan, A. Lei, Is electrosynthesis always green and advantageous compared to traditional methods? Nat. Commun. 11 (2020) 802. doi: 10.1038/s41467-020-14322-z
    [197]
    N. Sbei, T. Hardwick, N. Ahmed, Green chemistry: electrochemical organic transformations via paired electrolysis, ACS Sustain. Chem. Eng. 9 (2021) 6148–6169. doi: 10.1021/acssuschemeng.1c00665
    [198]
    C.J. Clarke, W.-C. Tu, O. Levers, A. Bröhl, J.P. Hallett, Green and sustainable solvents in chemical processes, Chem. Rev. 118 (2018) 747–800. doi: 10.1021/acs.chemrev.7b00571
    [199]
    T. Wirtanen, T. Prenzel, J.-P. Tessonnier, S.R. Waldvogel, Cathodic corrosion of metal electrodes—how to prevent it in electroorganic synthesis, Chem. Rev. 121 (2021) 10241–10270. doi: 10.1021/acs.chemrev.1c00148
    [200]
    D. Pletcher, R.A. Green, R.C.D. Brown, Flow electrolysis cells for the synthetic organic chemistry laboratory, Chem. Rev. 118 (2018) 4573–4591. doi: 10.1021/acs.chemrev.7b00360
    [201]
    S.B. Beil, D. Pollok, S.R. Waldvogel, Reproducibility in electroorganic synthesis—myths and misunderstandings, Angew. Chem. Int. Ed. 60 (2021) 14750–14759. doi: 10.1002/anie.202014544
    [202]
    E.C.R. McKenzie, S. Hosseini, A.G. Couto Petro, K.K. Rudman, B.H.R. Gerroll, M.S. Mubarak, L.A. Baker, R.D. Little, Versatile tools for understanding electrosynthetic mechanisms, Chem. Rev. 122 (2022) 3292–3335. doi: 10.1021/acs.chemrev.1c00471
    [203]
    D. Wang, T. Jiang, H. Wan, Z. Chen, J. Qi, A. Yang, Z. Huang, Y. Yuan, A. Lei, Alternating current electrolysis enabled formal C-O/O-H cross-metathesis of 4-alkoxy anilines with alcohols, Angew. Chem. Int. Ed. 61 (2022) e202201543.
    [204]
    S. Rodrigo, D. Gunasekera, J.P. Mahajan, L. Luo, Alternating current electrolysis for organic synthesis, Curr. Opin. Electrochem. 28 (2021) 100712. doi: 10.1016/j.coelec.2021.100712
    [205]
    J. Zhong, C. Ding, H. Kim, T. McCallum, K. Ye, Alternating current electrolysis: a photoredox catalysis mimic and beyond, Green Synth. Catal. 3 (2022) 4–10. doi: 10.1016/j.gresc.2022.01.003
    [206]
    S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S.R. Waldvogel, Modern electrochemical aspects for the synthesis of value-added organic products, Angew. Chem. Int. Ed. 57 (2018) 6018–6041. doi: 10.1002/anie.201712732
    [207]
    C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural, Chem. Soc. Rev. 49 (2020) 4273–4306. doi: 10.1039/D0CS00041H
    [208]
    S.A. Akhade, N. Singh, O.Y. Gutiérrez, J. Lopez-Ruiz, H. Wang, J.D. Holladay, Y. Liu, A. Karkamkar, R.S. Weber, A.B. Padmaperuma, M.-S. Lee, G.A. Whyatt, M. Elliott, J.E. Holladay, J.L. Male, J.A. Lercher, R. Rousseau, V.-A. Glezakou, Electrocatalytic hydrogenation of biomass-derived organics: a review, Chem. Rev. 120 (2020) 11370–11419. doi: 10.1021/acs.chemrev.0c00158
    [209]
    R. Francke, B. Schille, M. Roemelt, Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts, Chem. Rev. 118 (2018) 4631–4701. doi: 10.1021/acs.chemrev.7b00459
    [210]
    G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Electrocatalysis for CO2 conversion: from fundamentals to value-added products, Chem. Soc. Rev. 50 (2021) 4993–5061. doi: 10.1039/D0CS00071J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(77)

    Article Metrics

    Article views (385) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return