Citation: | Huang Binbin, Sun Zemin, Sun Genban. Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities[J]. eScience, 2022, 2(3): 243-277. doi: 10.1016/j.esci.2022.04.006 |
[1] |
J.B. Sperry, D.L. Wright, The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules, Chem. Soc. Rev. 35 (2006) 605–621. doi: 10.1039/b512308a
|
[2] |
M. Yan, Y. Kawamata, P.S. Baran, Synthetic organic electrochemical methods since 2000: on the verge of a renaissance, Chem. Rev. 117 (2017) 13230–13319. doi: 10.1021/acs.chemrev.7b00397
|
[3] |
A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S.R. Waldvogel, Electrifying organic synthesis, Angew. Chem. Int. Ed. 57 (2018) 5594–5619. doi: 10.1002/anie.201711060
|
[4] |
B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palmad, R. Vasquez-Medrano, Organic electrosynthesis: a promising green methodology in organic chemistry, Green Chem. 12 (2010) 2099–2119. doi: 10.1039/c0gc00382d
|
[5] |
H.J. Schäfer, Contributions of organic electrosynthesis to green chemistry, C. R. Chim. 14 (2011) 745–765. doi: 10.1016/j.crci.2011.01.002
|
[6] |
E.J. Horn, B.R. Rosen, P.S. Baran, Synthetic organic electrochemistry: an enabling and innately sustainable method, ACS Cent. Sci. 2 (2016) 302–308. doi: 10.1021/acscentsci.6b00091
|
[7] |
R. Francke, R.D. Little, Redox catalysis in organic electrosynthesis: basic principles and recent developments, Chem. Soc. Rev. 43 (2014) 2492–2521. doi: 10.1039/c3cs60464k
|
[8] |
G. Hilt, Basic strategies and types of applications in organic electrochemistry, Chemelectrochem 7 (2020) 395–405. doi: 10.1002/celc.201901799
|
[9] |
C. Kingston, M.D. Palkowitz, Y. Takahira, J.C. Vantourout, B.K. Peters, Y. Kawamata, P.S. Baran, A survival guide for the "electro-curious", Acc. Chem. Res. 53 (2020) 72–83. doi: 10.1021/acs.accounts.9b00539
|
[10] |
C. Schotten, T.P. Nicholls, R.A. Bourne, N. Kapur, B.N. Nguyen, C.E. Willans, Making electrochemistry easily accessible to the synthetic chemist, Green Chem. 22 (2020) 3358–3375. doi: 10.1039/D0GC01247E
|
[11] |
N. Sauermann, T.H. Meyer, Y. Qiu, L. Ackermann, Electrocatalytic C-H activation, ACS Catal. 8 (2018) 7086–7103. doi: 10.1021/acscatal.8b01682
|
[12] |
R.C. Samanta, T.H. Meyer, I. Siewert, L. Ackermann, Renewable resources for sustainable metallaelectro-catalysed C-H activation, Chem. Sci. 11 (2020) 8657–8670. doi: 10.1039/D0SC03578E
|
[13] |
S. Tang, Y. Liu, A. Lei, Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation, Inside Chem. 4 (2018) 27–45.
|
[14] |
Y. Yuan, J. Yang, A. Lei, Recent advances in electrochemical oxidative crosscoupling with hydrogen evolution involving radicals, Chem. Soc. Rev. 50 (2021) 10058–10086. doi: 10.1039/D1CS00150G
|
[15] |
C. Ma, P. Fang, T.-S. Mei, Recent advances in C-H functionalization using electrochemical transition metal catalysis, ACS Catal. 8 (2018) 7179–7189. doi: 10.1021/acscatal.8b01697
|
[16] |
K.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Site-selective C-H functionalization via synergistic use of electrochemistry and transition metal catalysis, Acc. Chem. Res. 53 (2020) 300–310. doi: 10.1021/acs.accounts.9b00603
|
[17] |
S.R. Waldvogel, S. Lips, M. Selt, B. Riehl, C.J. Kampf, Electrochemical arylation reaction, Chem. Rev. 118 (2018) 6706–6765. doi: 10.1021/acs.chemrev.8b00233
|
[18] |
J.L. Röckl, D. Pollok, R. Franke, S.R. Waldvogel, A decade of electrochemical dehydrogenative C, C-coupling of aryls, Acc. Chem. Res. 53 (2020) 45–61. doi: 10.1021/acs.accounts.9b00511
|
[19] |
P. Xiong, H.-C. Xu, Chemistry with electrochemically generated N-centered radicals, Acc. Chem. Res. 52 (2019) 3339–3350. doi: 10.1021/acs.accounts.9b00472
|
[20] |
N. Chen, H.-C. Xu, Electrochemical generation of nitrogen-centered radicals for organic synthesis, Green Synth. Catal. 2 (2021) 165–178. doi: 10.1016/j.gresc.2021.03.002
|
[21] |
M.D. Kärkäs, Electrochemical strategies for C-H functionalization and C-N bond formation, Chem. Soc. Rev. 47 (2018) 5786–5865. doi: 10.1039/C7CS00619E
|
[22] |
J. Chen, S. Lv, S. Tian, Electrochemical transition-metal-catalyzed C-H bond functionalization: electricity as clean surrogates of chemical oxidants, ChemSusChem 12 (2019) 115–132. doi: 10.1002/cssc.201801946
|
[23] |
G.S. Sauer, S. Lin, An electrocatalytic approach to the radical difunctionalization of alkenes, ACS Catal. 8 (2018) 5175–5187. doi: 10.1021/acscatal.8b01069
|
[24] |
G.M. Martins, B. Shirinfar, T. Hardwick, N. Ahmed, A green approach: vicinal oxidative electrochemical alkene defunctionalization, ChemElectroChem 6 (2019) 1300–1315. doi: 10.1002/celc.201801466
|
[25] |
H. Mei, Z. Yin, J. Liu, H. Sun, J. Han, Recent advances on the electrochemical difunctionalization of alkenes/alkynes, Chin. J. Chem. 37 (2019) 292–301.
|
[26] |
T. Fuchigami, S. Inagi, Recent advances in electrochemical systems for selective fluorination of organic compounds, Acc. Chem. Res. 53 (2020) 322–334. doi: 10.1021/acs.accounts.9b00520
|
[27] |
R. Feng, J.A. Smith, K.D. Moeller, Anodic cyclization reactions and the mechanistic strategies that enable optimization, Acc. Chem. Res. 50 (2017) 2346–2352. doi: 10.1021/acs.accounts.7b00287
|
[28] |
S. Liang, C.-C. Zeng, Organic electrochemistry: anodic construction of heterocyclic structures, Curr. Opin. Electrochem. 24 (2021) 31–43.
|
[29] |
S.-H. Shi, Y. Liang, N. Jiao, Electrochemical oxidation induced selective C-C bond cleavage, Chem. Rev. 121 (2021) 485–505. doi: 10.1021/acs.chemrev.0c00335
|
[30] |
S.H. Park, M. Ju, A.J. Ressler, J. Shim, H. Kim, S. Lin, Reductive electrosynthesis: a new dawn, Aldrichim. Acta 54 (2021) 17–27.
|
[31] |
L.F.T. Novaes, J. Liu, Y. Shen, L. Lu, J.M. Meinhardt, S. Lin, Electrocatalysis as an enabling technology for organic synthesis, Chem. Soc. Rev. 50 (2021) 7941–8002. doi: 10.1039/D1CS00223F
|
[32] |
C. Ma, P. Fang, Z.-R. Liu, S.-S. Xu, K. Xu, X. Cheng, A. Lei, H.-C. Xu, C. Zeng, T.-S. Mei, Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts, Sci. Bull. 66 (2021) 2412–2429. doi: 10.1016/j.scib.2021.07.011
|
[33] |
C.A. Malapit, M.B. Prater, J.R. Cabrera-Pardo, M. Li, T.D. Pham, T.P. McFadden, S. Blank, S.D. Minteer, Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis, Chem. Rev. 122 (2022) 3180–3218. doi: 10.1021/acs.chemrev.1c00614
|
[34] |
C. Ma, P. Fang, D. Liu, K.-J. Jiao, P.-S. Gao, H. Qiu, T.-S. Mei, Transition metalcatalyzed organic reactions in undivided electrochemical cells, Chem. Sci. 12 (2021) 12866–12873. doi: 10.1039/D1SC04011A
|
[35] |
J.-S. Zhong, Y. Yu, Z. Shi, K.-Y. Ye, An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry, Org. Chem. Front. 8 (2021) 1315–1328. doi: 10.1039/D0QO01227K
|
[36] |
X. Cheng, A. Lei, T.-S. Mei, H.-C. Xu, K. Xu, C. Zeng, Recent applications of homogeneous catalysis in electrochemical organic synthesis, CCS Chem. 4 (2022) 1120–1152. doi: 10.31635/ccschem.021.202101451
|
[37] |
Z. Shi, N. Li, H.-K. Lu, X. Chen, H. Zheng, Y. Yuan, K.-Y. Ye, Recent advances in the electrochemical hydrogenation of unsaturated hydrocarbons, Curr. Opin. Electrochem. 28 (2021) 100713. doi: 10.1016/j.coelec.2021.100713
|
[38] |
B. Huang, Y. Li, C. Yang, W. Xia, Electrochemical 1,4-reduction of α, β-unsaturated ketones with methanol and ammonium chloride as hydrogen sources, Chem. Commun. 55 (2019) 6731–6734. doi: 10.1039/C9CC02368B
|
[39] |
Y. Qin, J. Lu, Z. Zou, H. Hong, Y. Li, Y. Li, L. Chen, J. Hu, Y. Huang, Metal-free chemoselective hydrogenation of unsaturated carbon-carbon bonds via cathodic reduction, Org. Chem. Front. 7 (2020) 1817–1822. doi: 10.1039/D0QO00547A
|
[40] |
H. Qin, J. Yang, K. Yan, Y. Xue, M. Zhang, X. Sun, J. Wen, H. Wang, Electrochemical-induced hydrogenation of electron-deficient internal olefins and alkynes with CH3OH as hydrogen donor, Adv. Synth. Catal. 363 (2021) 2104–2109. doi: 10.1002/adsc.202100022
|
[41] |
J. Li, L. He, X. Liu, X. Cheng, G. Li, Electrochemical hydrogenation with gaseous ammonia, Angew. Chem. Int. Ed. 58 (2019) 1759–1763. doi: 10.1002/anie.201813464
|
[42] |
J. Sheng, N. Wu, X. Liu, F. Liu, S. Liu, W. Ding, C. Liu, X. Cheng, Electrochemical allylic hydrodefluorination reaction using gaseous ammonia as hydrogen source, Chin. J. Org. Chem. 40 (2020) 3873–3880. doi: 10.6023/cjoc202006071
|
[43] |
X. Zhang, R. Jiang, X. Cheng, Electrochemical tandem olefination and hydrogenation reaction with ammonia, J. Org. Chem. 86 (2021) 16016–16025. doi: 10.1021/acs.joc.1c01024
|
[44] |
X. Liu, R. Liu, J. Qiu, X. Cheng, G. Li, Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide, Angew. Chem. Int. Ed. 59 (2020) 13962–13967. doi: 10.1002/anie.202005765
|
[45] |
T. Wu, B.H. Nguyen, M.C. Daugherty, K.D. Moeller, Paired electrochemical reactions and the on-site generation of a chemical reagent, Angew. Chem. Int. Ed. 58 (2019) 3562–3565. doi: 10.1002/anie.201900343
|
[46] |
T. Wu, K.D. Moeller, Organic electrochemistry: expanding the scope of paired reactions, Angew. Chem. Int. Ed. 60 (2021) 12883–12890. doi: 10.1002/anie.202100193
|
[47] |
B. Li, H. Ge, Highly selective electrochemical hydrogenation of alkynes: rapid construction of mechanochromic materials, Sci. Adv. 5 (2019) eaaw2774. doi: 10.1126/sciadv.aaw2774
|
[48] |
A. Valiente, P. Martínez-Pardo, G. Kaur, M.J. Johansson, B. Martín-Matute, Electrochemical proton reduction over nickel foam for Z-stereoselective semihydrogenation/deuteration of functionalized alkynes, ChemSusChem 15 (2022) e202102221.
|
[49] |
Y. Wu, C. Liu, C. Wang, S. Lu, B. Zhang, Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode, Angew. Chem. Int. Ed. 59 (2020) 21170–21175. doi: 10.1002/anie.202009757
|
[50] |
Y. Wu, C. Liu, C. Wang, Y. Yu, Y. Shi, B. Zhang, Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semihydrogenation with water, Nat. Commun. 12 (2021) 3881. doi: 10.1038/s41467-021-24059-y
|
[51] |
R.S. Sherbo, R.S. Delima, V.A. Chiykowski, B.P. MacLeod, C.P. Berlinguette, Complete electron economy by pairing electrolysis with hydrogenation, Nat. Catal. 1 (2018) 501–507. doi: 10.1038/s41929-018-0083-8
|
[52] |
R.S. Sherbo, A. Kurimoto, C.M. Brown, C.P. Berlinguette, Efficient electrocatalytic hydrogenation with a palladium membrane reactor, J. Am. Chem. Soc. 141 (2019) 7815–7821. doi: 10.1021/jacs.9b01442
|
[53] |
A. Kurimoto, R.S. Sherbo, Y. Cao, N.W.X. Loo, C.P. Berlinguette, Electrolytic deuteration of unsaturated bonds without using D2, Nat. Catal. 3 (2020) 719–726. doi: 10.1038/s41929-020-0488-z
|
[54] |
R. Matthessen, J. Fransaer, K. Binnemans, D.E. De Vos, Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids, Beilstein J. Org. Chem. 10 (2014) 2484–2500. doi: 10.3762/bjoc.10.260
|
[55] |
Z. Yang, Y. Yu, L. Lai, L. Zhou, K. Ye, F.-E. Chen, Carbon dioxide cycle via electrocatalysis: electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids, Green Synth. Catal. 2 (2021) 19–26. doi: 10.1016/j.gresc.2021.01.009
|
[56] |
J.-H. Ye, T. Ju, H. Huang, L.-L. Liao, D.-G. Yu, Radical carboxylative cyclizations and carboxylations with CO2, Acc. Chem. Res. 54 (2021) 2518–2531. doi: 10.1021/acs.accounts.1c00135
|
[57] |
R. Chen, K. Tian, D. He, T. Gao, G. Yang, J. Xu, H. Chen, D. Wang, Y. Zhang, Carboxylation of α, β-unsaturated ketones by CO2 fixation through photoelectro-chemistry, ACS Appl. Energy Mater. 3 (2020) 5813–5818.
|
[58] |
A. Alkayal, V. Tabas, S. Montanaro, I.A. Wright, A.V. Malkov, B.R. Buckley, Harnessing applied potential: selective β-hydrocarboxylation of substituted olefins, J. Am. Chem. Soc. 142 (2020) 1780–1785. doi: 10.1021/jacs.9b13305
|
[59] |
Y. Kim, G.D. Park, M. Balamurugan, J. Seo, B.K. Min, K.T. Nam, Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water, Adv. Sci. 7 (2020) 1900137. doi: 10.1002/advs.201900137
|
[60] |
A.M. Sheta, M.A. Mashaly, S.B. Said, S.S. Elmorsy, A.V. Malkov, B.R. Buckley, Selective α, δ-hydrocarboxylation of conjugated dienes utilizing CO2 and electrosynthesis, Chem. Sci. 11 (2020) 9109–9114. doi: 10.1039/D0SC03148H
|
[61] |
A.M. Sheta, A. Alkayal, M.A. Mashaly, S.B. Said, S.S. Elmorsy, A.V. Malkov, B.R. Buckley, Selective electrosynthetic hydrocarboxylation of α, β-unsaturated esters with carbon dioxide, Angew. Chem. Int. Ed. 60 (2021) 21832–21837. doi: 10.1002/anie.202105490
|
[62] |
X.-T. Gao, Z. Zhang, X. Wang, J.-S. Tian, S.-L. Xie, F. Zhou, J. Zhou, Direct electrochemical defluorinative carboxylation of α-CF3 alkenes with carbon dioxide, Chem. Sci. 11 (2020) 10414–10420. doi: 10.1039/D0SC04091F
|
[63] |
S.-L. Xie, X.-T. Gao, H.-H. Wu, F. Zhou, J. Zhou, Direct electrochemical defluorinative carboxylation of gem-difluoroalkenes with carbon dioxide, Org. Lett. 22 (2020) 8424–8429. doi: 10.1021/acs.orglett.0c03051
|
[64] |
H. Xu, J. Liu, F. Nie, X. Zhao, Z. Jiang, Metal-free hydropyridylation of thioesteractivated alkenes via electroreductive radical coupling, J. Org. Chem. 86 (2021) 16204–16212. doi: 10.1021/acs.joc.1c01526
|
[65] |
S. Zhang, L. Li, X. Li, J. Zhang, K. Xu, G. Li, M. Findlater, Electroreductive 4-pyridylation of electron-deficient alkenes with assistance of Ni(acac)2, Org. Lett. 22 (2020) 3570–3575. doi: 10.1021/acs.orglett.0c01014
|
[66] |
J. Yang, J. Ma, K. Yan, L. Tian, B. Li, J. Wen, Electrochemical ammonium cationassisted hydropyridylation of ketone-activated alkenes: experimental and computational mechanistic studies, Adv. Synth. Catal. 364 (2022) 845–854. doi: 10.1002/adsc.202101361
|
[67] |
S. Zhang, W. Gao, J. Shi, J. Li, F. Li, Y. Liang, X. Zhan, M.-B. Li, Regioselective umpolung addition of dicyanobenzene to α, β-unsaturated alkenes enabled by electrochemical reduction, Org. Chem. Front. 9 (2022) 1261–1266. doi: 10.1039/D1QO01852C
|
[68] |
M. Ishifune, H. Yamashita, Y. Kera, N. Yamashita, K. Hirata, H. Murase, S. Kashimura, Electroreduction of aromatics using magnesium electrodes in aprotic solvents containing alcoholic proton donors, Electrochim. Acta 48 (2003) 2405–2409. doi: 10.1016/S0013-4686(03)00259-7
|
[69] |
B.K. Peters, K.X. Rodriguez, S.H. Reisberg, S.B. Beil, D.P. Hickey, Y. Kawamata, M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder, T.J. Gorey, S.L. Anderson, M. Neurock, S.D. Minteer, P.S. Baran, Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry, Science 363 (2019) 838–845. doi: 10.1126/science.aav5606
|
[70] |
Á. Péter, S. Agasti, O. Knowles, E. Pye, D.J. Procter, Recent advances in the chemistry of ketyl radicals, Chem. Soc. Rev. 50 (2021) 5349–5365. doi: 10.1039/D0CS00358A
|
[71] |
I. Fokin, I. Siewert, Chemoselective electrochemical hydrogenation of ketones and aldehydes with a well-defined base-metal catalyst, Chem. Eur. J. 26 (2020) 14137–14143. doi: 10.1002/chem.202002075
|
[72] |
H. Wang, Y.-N. Yue, R. Xiong, Y.-T. Liu, L.-R. Yang, Y. Wang, J.-X. Lu, Electrochemically promoted asymmetric transfer hydrogenation of 2, 2, 2-trifluoroacetophenone, J. Org. Chem. 86 (2021) 16158–16161. doi: 10.1021/acs.joc.1c01030
|
[73] |
Y. Wang, J. Zhao, T. Qiao, J. Zhang, G. Chen, Tunable system for electrochemical reduction of ketones and phthalimides, Chin. J. Chem. 39 (2021) 3297–3302. doi: 10.1002/cjoc.202100508
|
[74] |
Y. Bai, L. Shi, L. Zheng, S. Ning, X. Che, Z. Zhang, J. Xiang, Electroselective and controlled reduction of cyclic imides to hydroxylactams and lactams, Org. Lett. 23 (2021) 2298–2302. doi: 10.1021/acs.orglett.1c00430
|
[75] |
Y. Kawamata, K. Hayashi, E. Carlson, S. Shaji, D. Waldmann, B.J. Simmons, J.T. Edwards, C.W. Zapf, M. Saito, P.S. Baran, Chemoselective electrosynthesis using rapid alternating polarity, J. Am. Chem. Soc. 143 (2021) 16580–16588. doi: 10.1021/jacs.1c06572
|
[76] |
K. Okamoto, S. Nagahara, Y. Imada, R. Narita, Y. Kitano, K. Chiba, Hydrosilanemediated electrochemical reduction of amides, J. Org. Chem. 86 (2021) 15992–16000. doi: 10.1021/acs.joc.1c00931
|
[77] |
N. Kise, H. Nagamine, T. Sakurai, Electroreductive intermolecular coupling of chromones with benzophenones: synthesis of 2-diarylmethylchromones and tetrasubstituted furans, 2019, Eur. J. Org. Chem. (2019) 3662–3676.
|
[78] |
N. Kise, Y. Yoshimura, T. Manto, T. Sakurai, Electroreductive intermolecular coupling of 4-quinolones with benzophenones: synthesis of 2-substituted 4-quinolones, ACS Omega 4 (2019) 20080–20093. doi: 10.1021/acsomega.9b03342
|
[79] |
P. Hu, B.K. Peters, C.A. Malapit, J.C. Vantourout, P. Wang, J. Li, L. Mele, P.-G. Echeverria, S.D. Minteer, P.S. Baran, Electroreductive olefin-ketone coupling, J. Am. Chem. Soc. 142 (2020) 20979–20986. doi: 10.1021/jacs.0c11214
|
[80] |
S. Zhang, L. Li, J. Li, J. Shi, K. Xu, W. Gao, L. Zong, G. Li, M. Findlater, Electrochemical arylation of aldehydes, ketones, and alcohols: from cathodic reduction to convergent paired electrolysis, Angew. Chem. Int. Ed. 60 (2021) 7275–7282. doi: 10.1002/anie.202015230
|
[81] |
X. Zhang, C. Yang, H. Gao, L. Wang, L. Guo, W. Xia, Reductive arylation of aliphatic and aromatic aldehydes with cyanoarenes by electrolysis for the synthesis of alcohols, Org. Lett. 23 (2021) 3472–3476. doi: 10.1021/acs.orglett.1c00920
|
[82] |
C. Liu, R. Li, W. Zhou, Y. Liang, Y. Shi, R.-L. Li, Y. Ling, Y. Yu, J. Li, B. Zhang, Selectivity origin of organic electrosynthesis controlled by electrode materials: a case study on pinacols, ACS Catal. 11 (2021) 8958–8967. doi: 10.1021/acscatal.1c01382
|
[83] |
L. Muchez, D.E. De Vos, M. Kim, Sacrificial anode-free electrosynthesis of α-hydroxy acids via electrocatalytic coupling of carbon dioxide to aromatic alcohols, ACS Sustain. Chem. Eng. 7 (2019) 15860–15864. doi: 10.1021/acssuschemeng.9b04612
|
[84] |
Y.-F. Zhang, M. Mellah, Samarium(Ⅱ)-electrocatalyzed chemoselective reductive alkoxylation of phthalimides, Org. Chem. Front. 9 (2022) 1308–1314. doi: 10.1039/D1QO01760H
|
[85] |
Y. Liu, L. Xue, B. Shi, F. Bu, D. Wang, L. Lu, R. Shi, A. Lei, Catalyst-free electrochemical decarboxylative cross-coupling of N-hydroxyphthalimide esters and N-heteroarenes towards C(sp3)-C(sp2) bond formation, Chem. Commun. 55 (2019) 14922–14925. doi: 10.1039/C9CC08528A
|
[86] |
K. Niu, L. Song, Y. Hao, Y. Liu, Q. Wang, Electrochemical decarboxylative C3 alkylation of quinoxalin-2(1H)-ones with N-hydroxyphthalimide esters, Chem. Commun. 56 (2020) 11673–11676. doi: 10.1039/D0CC05391K
|
[87] |
X. Chen, X. Luo, X. Peng, J. Guo, J. Zai, P. Wang, Catalyst-free decarboxylation of carboxylic acids and deoxygenation of alcohols by electro-induced radical formation, Chem. Eur. J. 26 (2020) 3226–3230. doi: 10.1002/chem.201905224
|
[88] |
L.M. Barton, L. Chen, D.G. Blackmond, P.S. Baran, Electrochemical borylation of carboxylic acids, Proc. Natl. Acad. Sci. U.S.A. 118 (2021) e2109408118. doi: 10.1073/pnas.2109408118
|
[89] |
N. Kise, T. Manto, T. Sakurai, Electroreductive coupling of phthalimides with α, β-unsaturated carbonyl compounds and subsequent acid-catalyzed rearrangement to 4-aminonaphthalen-1-ols: density functional theory study of the acid-catalyzed rearrangement of ketene silyl acetals, J. Org. Chem. 86 (2021) 18232–18246. doi: 10.1021/acs.joc.1c02512
|
[90] |
N. Kise, S. Yamamoto, T. Sakurai, Electroreductive coupling of phthalic anhydrides with α, β-unsaturated carbonyl compounds: synthesis of 1,4-dihydroxynaphthalenes, J. Org. Chem. 85 (2020) 13973–13982. doi: 10.1021/acs.joc.0c02000
|
[91] |
H. Hong, Z. Zou, G. Liang, S. Pu, J. Hu, L. Chen, Z. Zhu, Y. Li, Y. Huang, Direct electrochemical reductive amination between aldehydes and amines with a H/Ddonor solvent, Org. Biomol. Chem. 18 (2020) 5832–5837. doi: 10.1039/D0OB01163K
|
[92] |
D.B. Nemez, B.K. Sidhu, P.K. Giesbrecht, J.D. Braun, D.E. Herbert, Electrochemical hydrogenation of α-ketoesters and benzoxazinones using carbon electrodes and a sustainable Brønsted acid, Org. Chem. Front. 8 (2021) 549–554. doi: 10.1039/D0QO01311K
|
[93] |
M. Klein, T. Güthner, J. Sans, F. Thalhammer, S.R. Waldvogel, Sustainable and cost-efficient electro-synthesis of formamidine acetate from cyanamide in aqueous acidic electrolyte, Green Chem. 23 (2021) 3289–3294. doi: 10.1039/D1GC00700A
|
[94] |
J. Wen, H. Qin, K. Yan, X. Yang, X. Sun, W. Wei, J. Yang, H. Wang, Electrochemical-induced transfer hydrogenation of imidazopyridines with secondary amine as hydrogen donor, Org. Lett. 22 (2020) 8824–8828. doi: 10.1021/acs.orglett.0c03205
|
[95] |
M. Li, C. Liu, Y. Huang, S. Han, B. Zhang, Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode, Chin. J. Catal. 42 (2021) 1983–1991. doi: 10.1016/S1872-2067(21)63834-2
|
[96] |
D. Lehnherr, Y. Lam, M.C. Nicastri, J. Liu, J.A. Newman, E.L. Regalado, D.A. DiRocco, T. Rovis, Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer, J. Am. Chem. Soc. 142 (2020) 468–478. doi: 10.1021/jacs.9b10870
|
[97] |
Y. Qu, C. Tsuneishi, H. Tateno, Y. Matsumura, M. Atobe, Green synthesis of α-amino acids by electrochemical carboxylation of imines in a flow microreactor, React. Chem. Eng. 2 (2017) 871–875. doi: 10.1039/C7RE00149E
|
[98] |
Y. Naito, Y. Nakamura, N. Shida, H. Senboku, K. Tanaka, M. Atobe, Integrated flow synthesis of α-amino acids by in situ generation of aldimines and subsequent electrochemical carboxylationm, J. Org. Chem. 86 (2021) 15953–15960. doi: 10.1021/acs.joc.1c00821
|
[99] |
X. Liu, C. Liu, X. Cheng, Ring-contraction of hantzsch esters and their derivatives to pyrroles via electrochemical extrusion of ethyl acetate out of aromatic rings, Green Chem. 23 (2021) 3468–3473. doi: 10.1039/D1GC00487E
|
[100] |
F. Alonso, I.P. Beletskaya, M. Yus, Metal-mediated reductive hydrodehalogenation of organic halides, Chem. Rev. 102 (2002) 4009–4091. doi: 10.1021/cr0102967
|
[101] |
E.T. Martin, C.M. McGuire, M.S. Mubarak, D.G. Peters, Electroreductive remediation of halogenated environmental pollutants, Chem. Rev. 116 (2016) 15198–15234. doi: 10.1021/acs.chemrev.6b00531
|
[102] |
J. Ke, H. Wang, L. Zhou, C. Mou, J. Zhang, L. Pan, Y.R. Chi, Hydrodehalogenation of aryl halides through direct electrolysis, Chem. Eur. J. 25 (2019) 6911–6914. doi: 10.1002/chem.201901082
|
[103] |
B. Huang, L. Guo, W. Xia, A facile and versatile electro-reductive system for hydrodefunctionalization under ambient conditions, Green Chem. 23 (2021) 2095–2103. doi: 10.1039/D1GC00317H
|
[104] |
C. Liu, S. Han, M. Li, X. Chong, B. Zhang, Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode, Angew. Chem. Int. Ed. 59 (2020) 18527–18531. doi: 10.1002/anie.202009155
|
[105] |
L. Lu, H. Li, Y. Zheng, F. Bu, A. Lei, Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides, CCS Chem. 2 (2020) 2669–2675.
|
[106] |
J.R. Box, A.P. Atkins, A.J.J. Lennox, Direct electrochemical hydrodefluorination of trifluoromethylketones enabled by non-protic conditions, Chem. Sci. 12 (2021) 10252–10258. doi: 10.1039/D1SC01574E
|
[107] |
Z. Zhou, Y. Yuan, Y. Cao, J. Qiao, A. Yao, J. Zhao, W. Zuo, W. Chen, A. Lei, Synergy of anodic oxidation and cathodic reduction leads to electrochemical C-H halogenation, Chin. J. Chem. 37 (2019) 611–615. doi: 10.1002/cjoc.201900091
|
[108] |
X. Meng, Y. Zhang, J. Luo, F. Wang, X. Cao, S. Huang, Electrochemical oxidative oxydihalogenation of alkynes for the synthesis of α, α-dihaloketones, Org. Lett. 22 (2020) 1169–1174. doi: 10.1021/acs.orglett.0c00052
|
[109] |
J. Hong, Q. Liu, F. Li, G. Bai, G. Liu, M. Li, O.S. Nayal, X. Fu, F. Mo, Electrochemical radical borylation of aryl iodides, Chin. J. Chem. 37 (2019) 347–351. doi: 10.1002/cjoc.201900001
|
[110] |
B. Wang, P. Peng, W. Ma, Z. Liu, C. Huang, Y. Cao, P. Hu, X. Qi, Q. Lu, Electrochemical borylation of alkyl halides: fast, scalable access to alkyl boronic esters, J. Am. Chem. Soc. 143 (2021) 12985–12991. doi: 10.1021/jacs.1c06473
|
[111] |
J.P. Barham, B. König, Synthetic photoelectrochemistry, Angew. Chem. Int. Ed. 59 (2020) 11732–11747. doi: 10.1002/anie.201913767
|
[112] |
J. Liu, L. Lu, D. Wood, S. Lin, New redox strategies in organic synthesis by means of electrochemistry and photochemistry, ACS Cent. Sci. 6 (2020) 1317–1340. doi: 10.1021/acscentsci.0c00549
|
[113] |
H. Kim, H. Kim, T.H. Lambert, S. Lin, Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potentials, J. Am. Chem. Soc. 142 (2020) 2087–2092. doi: 10.1021/jacs.9b10678
|
[114] |
N.G.W. Cowper, C.P. Chernowsky, O.P. Williams, Z.K. Wickens, Potent reductants via electron-primed photoredox catalysis: unlocking aryl chlorides for radical coupling, J. Am. Chem. Soc. 142 (2020) 2093–2099. doi: 10.1021/jacs.9b12328
|
[115] |
N. Corbin, D.-T. Yang, N. Lazouski, K. Steinberg, K. Manthiram, Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes, Chem. Sci. 12 (2021) 12365–12376. doi: 10.1039/D1SC02413B
|
[116] |
S. Bazzi, E. Schulz, M. Mellah, Electrogenerated Sm(Ⅱ)-catalyzed CO2 activation for carboxylation of benzyl halides, Org. Lett. 21 (2019) 10033–10037. doi: 10.1021/acs.orglett.9b03927
|
[117] |
S. Bazzi, G. Le Duc, E. Schulz, C. Gosmini, M. Mellah, CO2 activation by electrogenerated divalent samarium for aryl halide carboxylation, Org. Biomol. Chem. 17 (2019) 8546–8550. doi: 10.1039/C9OB01752F
|
[118] |
S. Mena, J. Sanchez, G. Guirado, Electrocarboxylation of 1-chloro-(4-isobutylphenyl) ethane with a silver cathode in ionic liquids: an environmentally benign and efficient way to synthesize Ibuprofen, RSC Adv. 9 (2019) 15115–15123. doi: 10.1039/C9RA01781J
|
[119] |
S. Mena, S. Santiago, I. Gallardo, G. Guirado, Sustainable and efficient electrosynthesis of naproxen using carbon dioxide and ionic liquids, Chemosphere 245 (2020) 125557. doi: 10.1016/j.chemosphere.2019.125557
|
[120] |
D. Li, T.-K. Ma, R.J. Scott, J.D. Wilden, Electrochemical radical reactions of alkyl iodides: a highly efficient, clean, green alternative to tin reagents, Chem. Sci. 11 (2020) 5333–5338. doi: 10.1039/D0SC01694B
|
[121] |
T.-K. Ma, D. Li, J.D. Wilden, Mechanistic studies of reactive oxygen species mediated electrochemical radical reactions of alkyl iodides, Chem. Commun. 57 (2021) 8356–8359. doi: 10.1039/D1CC03019A
|
[122] |
W. Zhang, S. Lin, Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism, J. Am. Chem. Soc. 142 (2020) 20661–20670. doi: 10.1021/jacs.0c08532
|
[123] |
H. Zhang, M. Liang, X. Zhang, M.-K. He, C. Yang, L. Guo, W. Xia, Electrochemical synthesis of functionalized gem-difluoroalkenes with diverse alkyl sources via a defluorinative alkylation process, Org. Chem. Front. 9 (2022) 95–101. doi: 10.1039/D1QO01460A
|
[124] |
Y. Liang, F. Lin, Y. Adeli, R. Jin, N. Jiao, Efficient electrocatalysis for the preparation of (hetero)aryl chlorides and vinyl chloride with 1,2-dichloroethane, Angew. Chem. Int. Ed. 58 (2019) 4566–4570. doi: 10.1002/anie.201814570
|
[125] |
X. Dong, J.L. Roeckl, S.R. Waldvogel, B. Morandi, Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations, Science 371 (2021) 507–514. doi: 10.1126/science.abf2974
|
[126] |
N. Fu, G.S. Sauer, S. Lin, Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources, J. Am. Chem. Soc. 139 (2017) 15548–15553. doi: 10.1021/jacs.7b09388
|
[127] |
X.-A. Liang, L. Niu, S. Wang, A. Lei, Electrochemical (3+2) cyclization between amides and olefins, Chem. Catal. 1 (2021) 1055–1064. doi: 10.1016/j.checat.2021.08.004
|
[128] |
M. Li, C. Zhang, Y.-Q. Zhou, Y. Liu, N. Zhao, X. Li, L.-J. Gu, Electrochemical intramolecular haloheterocyclization reactions using 1,2-dihaloethanes as halogenating reagents, Tetrahedron Lett. 89 (2022) 153602. doi: 10.1016/j.tetlet.2021.153602
|
[129] |
F. Ling, T. Liu, C. Xu, J. He, W. Zhang, C. Ling, L. Liu, W. Zhong, Divergent electrolysis for the controllable coupling of thiols with 1,2-dichloroethane: a mild approach to sulfide and sulfoxide, Green Chem. 24 (2022) 1342–1349. doi: 10.1039/D1GC03440E
|
[130] |
M.J. Hossain, T. Ono, K. Wakiya, Y. Hisaeda, A vitamin B12 derivative catalyzed electrochemical trifluoromethylation and perfluoroalkylation of arenes and heteroarenes in organic media, Chem. Commun. 53 (2017) 10878–10881. doi: 10.1039/C7CC06221D
|
[131] |
Z. Luo, K. Imamura, Y. Shiota, K. Yoshizawa, Y. Hisaeda, H. Shimakoshi, One-pot synthesis of tertiary amides from organic trichlorides through oxygen atom incorporation from air by convergent paired electrolysis, J. Org. Chem. 86 (2021) 5983–5990. doi: 10.1021/acs.joc.1c00161
|
[132] |
M. Moniruzzaman, Y. Yano, T. Ono, K. Imamura, Y. Shiota, K. Yoshizawa, Y. Hisaeda, H. Shimakoshi, Electrochemical synthesis of cyanoformamides from trichloroacetonitrile and secondary amines mediated by the B12 derivative, J. Org. Chem. 86 (2021) 16134–16143. doi: 10.1021/acs.joc.1c00837
|
[133] |
M. Lübbesmeyer, D. Leifert, H. Schäfer, A. Studer, Electrochemical initiation of electron-catalyzed phenanthridine synthesis by trifluoromethylation of isonitriles, Chem. Commun. 54 (2018) 2240–2243. doi: 10.1039/C7CC09302K
|
[134] |
C. Yang, G. Magallanes, S. Maldonado, C.R.J. Stephenson, Electro-reductive fragmentation of oxidized lignin models, J. Org. Chem. 86 (2021) 15927–15934. doi: 10.1021/acs.joc.1c00346
|
[135] |
H. Senboku, K. Sakai, A. Fukui, Y. Sato, Y. Yamauchi, Efficient synthesis of mandel acetates by electrochemical carboxylation of benzal diacetates, ChemElectroChem 6 (2019) 4158–4164. doi: 10.1002/celc.201900200
|
[136] |
C. Huang, W. Ma, X. Zheng, M. Xu, X. Qi, Q. Lu, Epoxide electroreduction, J. Am. Chem. Soc. 144 (2022) 1389–1395. doi: 10.1021/jacs.1c11791
|
[137] |
X. Tian, T.A. Karl, S. Reiter, S. Yakubov, R. Vivie-Riedle, B. König, J.P. Barham, Electro-mediated photoredox catalysis for selective C(sp3)-O cleavages of phosphinated alcohols to carbanions, Angew. Chem. Int. Ed. 60 (2021) 20817–20825. doi: 10.1002/anie.202105895
|
[138] |
C.P. Chernowsky, A.F. Chmiel, Z.K. Wickens, Electrochemical activation of diverse conventional photoredox catalysts induces potent photoreductant activity, Angew. Chem. Int. Ed. 60 (2021) 21418–21425. doi: 10.1002/anie.202107169
|
[139] |
Z. Zou, G. Cai, W. Chen, C. Zou, Y. Li, H. Wu, L. Chen, J. Hu, Y. Li, Y. Huang, Metal-free cascade formation of intermolecular C-N bonds accessing substituted isoindolinones under cathodic reduction, J. Org. Chem. 86 (2021) 15777–15784. doi: 10.1021/acs.joc.1c01845
|
[140] |
D.-T. Yang, M. Zhu, Z.J. Schiffer, K. Williams, X. Song, X. Liu, K. Manthiram, Direct electrochemical carboxylation of benzylic C-N bonds with carbon dioxide, ACS Catal. 9 (2019) 4699–4705. doi: 10.1021/acscatal.9b00818
|
[141] |
X. Kong, L. Lin, Q. Chen, B. Xu, Radical generation from electroreduction of aryl and benzyl ammonium salts: synthesis of organoboronates, Org. Chem. Front. 8 (2021) 702–707. doi: 10.1039/D0QO00979B
|
[142] |
X. Kong, Y. Wang, Y. Chen, X. Chen, L. Lin, Z.-Y. Cao, Cyanation and cyanomethylation of trimethylammonium salts via electrochemical cleavage of C-N bonds, Org. Chem. Front. 9 (2022) 1288–1294. doi: 10.1039/D1QO01858B
|
[143] |
Q. Liu, B. Sun, Z. Liu, Y. Kao, B.-W. Dong, S.-D. Jiang, F. Li, G. Liu, Y. Yang, F. Mo, A general electrochemical strategy for the Sandmeyer reaction, Chem. Sci. 9 (2018) 8731–8737. doi: 10.1039/C8SC03346C
|
[144] |
P. Wang, Z. Yang, Z. Wang, C. Xu, L. Huang, S. Wang, H. Zhang, A. Lei, Electrochemical arylation of electron-deficient arenes through reductive activation, Angew. Chem. Int. Ed. 58 (2019) 15747–15751. doi: 10.1002/anie.201909600
|
[145] |
Y. Jiang, G. Dou, L. Zhang, K. Xu, R.D. Little, C. Zeng, Electrochemical crosscoupling of C(sp2)-H with aryldiazonium salts via a paired electrolysis: an alternative to visible light photoredox-based approach, Adv. Synth. Catal. 361 (2019) 5170–5175. doi: 10.1002/adsc.201901011
|
[146] |
J.-S. Zhong, Z.-X. Yang, C.-L. Ding, Y.-F. Huang, Y. Zhao, H. Yan, K.-Y. Ye, Desulfonylative electrocarboxylation with carbon dioxide, J. Org. Chem. 86 (2021) 16162–16170. doi: 10.1021/acs.joc.1c01261
|
[147] |
H. Senboku, Y. Minemura, Y. Suzuki, H. Matsuno, M. Takakuwa, Synthesis of N-Boc-α-amino acids from carbon dioxide by electrochemical carboxylation of N-Boc-α-aminosulfones, J. Org. Chem. 86 (2021) 16077–16083. doi: 10.1021/acs.joc.1c01516
|
[148] |
X. Zhou, C. Ni, L. Deng, J. Hu, Electrochemical reduction of fluoroalkyl sulfones for radical fluoroalkylation of alkenes, Chem. Commun. 57 (2021) 8750–8753. doi: 10.1039/D1CC03258E
|
[149] |
Y. Ouyang, X.-H. Xu, F.-L. Qing, Electrochemical trifluoromethoxylation of (hetero)aromatics with a trifluoromethyl source and oxygen, Angew. Chem. Int. Ed. 61 (2022) e202114048.
|
[150] |
Y. Ma, X. Yao, L. Zhang, P. Ni, R. Cheng, J. Ye, Direct arylation of α-amino C(sp3)-H bonds by convergent paired electrolysis, Angew. Chem. Int. Ed. 58 (2019) 16548–16552. doi: 10.1002/anie.201909642
|
[151] |
Y. Mo, Z. Lu, G. Rughoobur, P. Patil, N. Gershenfeld, A.I. Akinwande, S.L. Buchwald, K.F. Jensen, Microfluidic electrochemistry for single-electron transfer redox-neutral reactions, Science 368 (2020) 1352–1357. doi: 10.1126/science.aba3823
|
[152] |
J. Wen, X. Yang, K. Yan, H. Qin, J. Ma, X. Sun, J. Yang, H. Wang, Electroreductive C3 pyridylation of quinoxalin-2(1H)-ones: an effective way to access bidentate nitrogen ligands, Org. Lett. 23 (2021) 1081–1085. doi: 10.1021/acs.orglett.0c04296
|
[153] |
L.-L. Liao, Z.-H. Wang, K.-G. Cao, G.-Q. Sun, W. Zhang, C.-K. Ran, Y. Li, L. Chen, G.-M. Cao, D.-G. Yu, Electrochemical ring-opening dicarboxylation of strained carbon-carbon single bonds with CO2: facile synthesis of diacids and derivatization into polyesters, J. Am. Chem. Soc. 144 (2022) 2062–2068. doi: 10.1021/jacs.1c12071
|
[154] |
T. Wirtanen, E. Rodrigo, S.R. Waldvogel, Recent advances in the electrochemical reduction of substrates involving N-O bonds, Adv. Synth. Catal. 362 (2020) 2088–2101. doi: 10.1002/adsc.202000349
|
[155] |
Y.-F. Zhang, M. Mellah, Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2, ACS Catal. 7 (2017) 8480–8486. doi: 10.1021/acscatal.7b02940
|
[156] |
Y. Ma, S. Wu, S. Jiang, F. Xiao, G.-J. Deng, Electrosynthesis of azobenzenes directly from nitrobenzenes, Chin. J. Chem. 39 (2021) 3334–3338. doi: 10.1002/cjoc.202100470
|
[157] |
L. Chang, J. Li, N. Wu, X. Cheng, Chemoselective electrochemical reduction of nitroarenes with gaseous ammonia, Org. Biomol. Chem. 19 (2021) 2468–2472. doi: 10.1039/D1OB00077B
|
[158] |
X. Chong, C. Liu, Y. Huang, C. Huang, B. Zhang, Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode, Natl. Sci. Rev. 7 (2020) 285–295. doi: 10.1093/nsr/nwz146
|
[159] |
Y. Zhao, C. Liu, C. Wang, X. Chong, B. Zhang, Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4-x Nanosheet cathode, CCS Chem. 2 (2020) 507–515.
|
[160] |
S. Wu, X. Huang, H. Zhang, Z. Wei, M. Wang, Efficient electrochemical hydrogenation of nitroaromatics into arylamines on a CuCo2O4 spinel cathode in an alkaline electrolyte, ACS Catal. 12 (2022) 58–65. doi: 10.1021/acscatal.1c03763
|
[161] |
X. Sun, Q. Zhu, J. Hu, X. Kang, J. Ma, H. Liu, B. Han, N, N-dimethylation of nitrobenzenes with CO2 and water by electrocatalysis, Chem. Sci. 8 (2017) 5669–5674. doi: 10.1039/C7SC01058C
|
[162] |
D. Wang, Z. Wan, H. Zhang, H. Alhumade, H. Yi, A. Lei, Electrochemical reductive arylation of nitroarenes with arylboronic acids, ChemSusChem 14 (2021) 5399–5404. doi: 10.1002/cssc.202101924
|
[163] |
E. Rodrigo, S.R. Waldvogel, A very simple one-pot electrosynthesis of nitrones starting from nitro and aldehyde components, Green Chem. 20 (2018) 2013–2017. doi: 10.1039/C8GC00474A
|
[164] |
H. Salehzadeh, M.H. Mashhadizadeh, Nitrone synthesis via pair electrochemical coupling of nitro-compounds with benzyl alcohol derivatives, J. Org. Chem. 84 (2019) 9307–9312. doi: 10.1021/acs.joc.9b00736
|
[165] |
E. Rodrigo, S.R. Waldvogel, Simple electrochemical reduction of nitrones to amines, Chem. Sci. 10 (2019) 2044–2047. doi: 10.1039/C8SC04337J
|
[166] |
S. Hosseini, S.A. Bawel, M.S. Mubarak, D.G. Peters, Rapid and high-yield electrosynthesis of benzisoxazole and some derivatives, ChemElectroChem 6 (2019) 4318–4324. doi: 10.1002/celc.201801321
|
[167] |
E. Rodrigo, H. Baunis, E. Suna, S.R. Waldvogel, Simple and scalable electrochemical synthesis of 2, 1-benzisoxazoles and quinoline N-oxides, Chem. Commun. 55 (2019) 12255–12258. doi: 10.1039/C9CC06054E
|
[168] |
T. Wirtanen, E. Rodrigo, S.R. Waldvogel, Selective and scalable electrosynthesis of 2H-2-(aryl)-benzo[d]-1, 2, 3-triazoles and their N-oxides by using leaded bronze cathodes, Chem. Eur. J. 26 (2020) 5592–5597. doi: 10.1002/chem.201905874
|
[169] |
B. Mokhtari, D. Nematollahi, H. Salehzadeh, Paired electrochemical conversion of nitroarenes to sulfonamides, diarylsulfones and bis(arylsulfonyl)aminophenols, Green Chem. 20 (2018) 1499–1505. doi: 10.1039/C7GC03576D
|
[170] |
B. Mokhtari, D. Nematollahi, H. Salehzadeh, A tunable pair electrochemical strategy for the synthesis of new benzenesulfonamide derivatives, Sci. Rep. 9 (2019) 4537. doi: 10.1038/s41598-019-38544-4
|
[171] |
P. Xu, H.-C. Xu, Electrochemical deoxygenation of N-heteroaromatic N-oxides, Synlett 30 (2019) 1219–1221. doi: 10.1055/s-0037-1611541
|
[172] |
Y. Fukazawa, A.E. Rubtsov, A.V. Malkov, A mild method for electrochemical reduction of heterocyclic N-oxides, Eur. J. Org. Chem. 2020 (2020) 3317–3319. doi: 10.1002/ejoc.202000377
|
[173] |
H.-B. Zhao, P. Xu, J. Song, H.-C. Xu, Cathode material determines product selectivity for electrochemical C-H functionalization of biaryl ketoximes, Angew. Chem. Int. Ed. 57 (2018) 15153–15156. doi: 10.1002/anie.201809679
|
[174] |
Y. Yuan, M. Jiang, T. Wang, Y. Xiong, J. Li, H. Guo, A. Lei, Synergy of anodic oxidation and cathodic reduction leads to electrochemical deoxygenative C2 arylation of quinoline N-oxides, Chem. Commun. 55 (2019) 11091–11094. doi: 10.1039/C9CC05841A
|
[175] |
X. Chang, Q. Zhang, C. Guo, Electrochemical reductive Smiles rearrangement for C-N bond formation, Org. Lett. 21 (2019) 10–13. doi: 10.1021/acs.orglett.8b03178
|
[176] |
S. Manabe, C.M. Wong, C.S. Sevov, Direct and scalable electroreduction of triphenylphosphine oxide to triphenylphosphine, J. Am. Chem. Soc. 142 (2020) 3024–3031. doi: 10.1021/jacs.9b12112
|
[177] |
B. Chakraborty, A. Kostenko, P.W. Menezes, M. Driess, A systems approach to a one-pot electrochemical Wittig olefination avoiding the use of chemical reductant or sacrificial electrode, Chem. Eur. J. 26 (2020) 11829–11834. doi: 10.1002/chem.202001654
|
[178] |
B. Chakraborty, P.W. Menezes, M. Driess, Beyond CO2 reduction: vistas on electrochemical reduction of heavy non-metal oxides with very strong E-O bonds (E = Si, P, S), J. Am. Chem. Soc. 142 (2020) 14772–14788. doi: 10.1021/jacs.0c05862
|
[179] |
Z. Kong, C. Pan, M. Li, L. Wen, W. Guo, Scalable electrochemical reduction of sulfoxides to sulfides, Green Chem. 23 (2021) 2773–2777. doi: 10.1039/D1GC00591J
|
[180] |
D. Chen, X. Nie, Q. Feng, Y. Zhang, Y. Wang, Q. Wang, L. Huang, S. Huang, S. Liao, Electrochemical oxo-fluorosulfonylation of alkynes under air: facile access to β-keto sulfonyl fluorides, Angew. Chem. Int. Ed. 60 (2021) 27271–27276. doi: 10.1002/anie.202112118
|
[181] |
M. Yu, H. Wang, Y. Gao, F. Bu, H. Cong, A. Lei, Manganese-catalyzed chlorosulfonylation of terminal alkene and alkyne via convergent paired electrolysis, Cell Rep. Phys. Sci. 2 (2021) 100476. doi: 10.1016/j.xcrp.2021.100476
|
[182] |
S. Rodrigo, C. Um, J.C. Mixdorf, D. Gunasekera, H.M. Nguyen, L. Luo, Alternating current electrolysis for organic electrosynthesis: trifluoromethylation of (hetero) arenes, Org. Lett. 22 (2020) 6719–6723. doi: 10.1021/acs.orglett.0c01906
|
[183] |
W. Jud, S. Maljuric, C.O. Kappe, D. Cantillo, Cathodic C-H trifluoromethylation of arenes and heteroarenes enabled by an in situ-generated triflyltriethylammonium complex, Org. Lett. 21 (2019) 7970–7975. doi: 10.1021/acs.orglett.9b02948
|
[184] |
Y. Guo, R. Wang, H. Song, Y. Liu, Q. Wang, Electrochemical trifluoromethylation/ cyclization for the synthesis of isoquinoline-1, 3-diones and oxindoles, Chem. Commun. 57 (2021) 8284–8287. doi: 10.1039/D1CC03389A
|
[185] |
L. Lu, J.C. Siu, Y. Lai, S. Lin, An electroreductive approach to radical silylation via the activation of strong Si-Cl bond, J. Am. Chem. Soc. 142 (2020) 21272–21278. doi: 10.1021/jacs.0c10899
|
[186] |
M.-X. He, Y.-Z. Wu, Y. Yao, Z.-Y. Mo, Y.-M. Pan, H.-T. Tang, Paired electrosynthesis of aromatic azo compounds from aryl diazonium salts with pyrroles or indoles, Adv. Synth. Catal. 363 (2021) 2752–2756. doi: 10.1002/adsc.202001457
|
[187] |
D.M. Heard, A.J.J. Lennox, Electrode materials in modern organic electrochemistry, Angew. Chem. Int. Ed. 59 (2020) 18866–18884. doi: 10.1002/anie.202005745
|
[188] |
F. Wang, S.S. Stahl, Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electronproton transfer mediators, Acc. Chem. Res. 53 (2020) 561–574. doi: 10.1021/acs.accounts.9b00544
|
[189] |
K.-J. Jiao, Z.-M. Li, X.-T. Xu, L.-P. Zhang, Y.-Q. Li, K. Zhang, T.-S. Mei, Palladiumcatalyzed reductive electrocarboxylation of allyl esters with carbon dioxide, Org. Chem. Front. 5 (2018) 2244–2248. doi: 10.1039/C8QO00507A
|
[190] |
T.J. DeLano, S.E. Reisman, Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis, ACS Catal. 9 (2019) 6751–6754. doi: 10.1021/acscatal.9b01785
|
[191] |
H. Qiu, B. Shuai, Y.-Z. Wang, D. Liu, Y.-G. Chen, P.-S. Gao, H.-X. Ma, S. Chen, T.-S. Mei, Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers, J. Am. Chem. Soc. 142 (2020) 9872–9878. doi: 10.1021/jacs.9b13117
|
[192] |
Q. Lin, L. Li, S. Luo, Asymmetric electrochemical catalysis, Chem. Eur. J. 25 (2019) 10033–10044. doi: 10.1002/chem.201901284
|
[193] |
X. Chang, Q. Zhang, C. Guo, Asymmetric electrochemical transformations, Angew. Chem. Int. Ed. 59 (2020) 12612–12622. doi: 10.1002/anie.202000016
|
[194] |
X. Wang, X. Xu, Z. Wang, P. Fang, T. Mei, Advances in asymmetric organotransition metal-catalyzed electrochemistry, Chin. J. Org. Chem. 40 (2020) 3738–3747. doi: 10.6023/cjoc202003022
|
[195] |
K. Yamamoto, M. Kuriyama, O. Onomura, Asymmetric electrosynthesis: recent advances in catalytic transformations, Curr. Opin. Electrochem. 28 (2021) 100714. doi: 10.1016/j.coelec.2021.100714
|
[196] |
Y. Yuan, A. Lei, Is electrosynthesis always green and advantageous compared to traditional methods? Nat. Commun. 11 (2020) 802. doi: 10.1038/s41467-020-14322-z
|
[197] |
N. Sbei, T. Hardwick, N. Ahmed, Green chemistry: electrochemical organic transformations via paired electrolysis, ACS Sustain. Chem. Eng. 9 (2021) 6148–6169. doi: 10.1021/acssuschemeng.1c00665
|
[198] |
C.J. Clarke, W.-C. Tu, O. Levers, A. Bröhl, J.P. Hallett, Green and sustainable solvents in chemical processes, Chem. Rev. 118 (2018) 747–800. doi: 10.1021/acs.chemrev.7b00571
|
[199] |
T. Wirtanen, T. Prenzel, J.-P. Tessonnier, S.R. Waldvogel, Cathodic corrosion of metal electrodes—how to prevent it in electroorganic synthesis, Chem. Rev. 121 (2021) 10241–10270. doi: 10.1021/acs.chemrev.1c00148
|
[200] |
D. Pletcher, R.A. Green, R.C.D. Brown, Flow electrolysis cells for the synthetic organic chemistry laboratory, Chem. Rev. 118 (2018) 4573–4591. doi: 10.1021/acs.chemrev.7b00360
|
[201] |
S.B. Beil, D. Pollok, S.R. Waldvogel, Reproducibility in electroorganic synthesis—myths and misunderstandings, Angew. Chem. Int. Ed. 60 (2021) 14750–14759. doi: 10.1002/anie.202014544
|
[202] |
E.C.R. McKenzie, S. Hosseini, A.G. Couto Petro, K.K. Rudman, B.H.R. Gerroll, M.S. Mubarak, L.A. Baker, R.D. Little, Versatile tools for understanding electrosynthetic mechanisms, Chem. Rev. 122 (2022) 3292–3335. doi: 10.1021/acs.chemrev.1c00471
|
[203] |
D. Wang, T. Jiang, H. Wan, Z. Chen, J. Qi, A. Yang, Z. Huang, Y. Yuan, A. Lei, Alternating current electrolysis enabled formal C-O/O-H cross-metathesis of 4-alkoxy anilines with alcohols, Angew. Chem. Int. Ed. 61 (2022) e202201543.
|
[204] |
S. Rodrigo, D. Gunasekera, J.P. Mahajan, L. Luo, Alternating current electrolysis for organic synthesis, Curr. Opin. Electrochem. 28 (2021) 100712. doi: 10.1016/j.coelec.2021.100712
|
[205] |
J. Zhong, C. Ding, H. Kim, T. McCallum, K. Ye, Alternating current electrolysis: a photoredox catalysis mimic and beyond, Green Synth. Catal. 3 (2022) 4–10. doi: 10.1016/j.gresc.2022.01.003
|
[206] |
S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S.R. Waldvogel, Modern electrochemical aspects for the synthesis of value-added organic products, Angew. Chem. Int. Ed. 57 (2018) 6018–6041. doi: 10.1002/anie.201712732
|
[207] |
C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural, Chem. Soc. Rev. 49 (2020) 4273–4306. doi: 10.1039/D0CS00041H
|
[208] |
S.A. Akhade, N. Singh, O.Y. Gutiérrez, J. Lopez-Ruiz, H. Wang, J.D. Holladay, Y. Liu, A. Karkamkar, R.S. Weber, A.B. Padmaperuma, M.-S. Lee, G.A. Whyatt, M. Elliott, J.E. Holladay, J.L. Male, J.A. Lercher, R. Rousseau, V.-A. Glezakou, Electrocatalytic hydrogenation of biomass-derived organics: a review, Chem. Rev. 120 (2020) 11370–11419. doi: 10.1021/acs.chemrev.0c00158
|
[209] |
R. Francke, B. Schille, M. Roemelt, Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts, Chem. Rev. 118 (2018) 4631–4701. doi: 10.1021/acs.chemrev.7b00459
|
[210] |
G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Electrocatalysis for CO2 conversion: from fundamentals to value-added products, Chem. Soc. Rev. 50 (2021) 4993–5061. doi: 10.1039/D0CS00071J
|