Citation: | Zhang Chao Yue, Zhang Chaoqi, Pan Jiang Long, Sun Guo Wen, Shi Zude, Li Canhuang, Chang Xingqi, Sun Geng Zhi, Zhou Jin Yuan, Cabot Andreu. Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries[J]. eScience, 2022, 2(4): 405-415. doi: 10.1016/j.esci.2022.07.001 |
![]() |
![]() |
[1] |
A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries, Chem. Rev. 114(2014) 11751–11787. doi: 10.1021/cr500062v
|
[2] |
H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.-Q. Huang, Q. Zhang, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries, Adv. Energy Mater. 9(2019) 1802768.
|
[3] |
L.F. Nazar, M. Cuisinier, Q. Pang, Lithium-sulfur batteries, MRS Bull. 39(2014) 436–442. doi: 10.1557/mrs.2014.86
|
[4] |
Q. Wu, Z. Yao, X. Zhou, J. Xu, F. Cao, C. Li, Built-in catalysis in confined nanoreactors for high-loading Li–S batteries, ACS Nano 14(2020) 3365–3377. doi: 10.1021/acsnano.9b09231
|
[5] |
L. Hu, C. Dai, H. Liu, Y. Li, B. Shen, Y. Chen, S.-J. Bao, M. Xu, Double-shelled NiO-NiCo2O4 Heterostructure@Carbon hollow nanocages as an efficient sulfur host for advanced lithium–sulfur batteries, Adv. Energy Mater. 8(2018) 1800709. doi: 10.1002/aenm.201800709
|
[6] |
W.-J. Chen, C.-X. Zhao, B.-Q. Li, Q. Jin, X.-Q. Zhang, T.-Q. Yuan, X. Zhang, Z. Jin, S. Kaskel, Q. Zhang, A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries, Energy Environ. Mater. 3(2020) 160–165. doi: 10.1002/eem2.12073
|
[7] |
Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu, Y. Zhao, S.W. Koh, P. Gao, Z.W. Seh, K. Chan, H. Li, Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries, Adv. Energy Mater. 10(2020) 1904010. doi: 10.1002/aenm.201904010
|
[8] |
Z. Liang, D. Yang, P. Tang, C. Zhang, J. Jacas Biendicho, Y. Zhang, J. Llorca, X. Wang, J. Li, M. Heggen, J. David, R.E. Dunin-Borkowski, Y. Zhou, J.R. Morante, A. Cabot, J. Arbiol, Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium–sulfur batteries, Adv. Energy Mater. 11(2021) 2003507. doi: 10.1002/aenm.202003507
|
[9] |
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao, D. Yang, T. Zhang, X. Wang, J. Arbiol, J. Llorca, Y. Zhou, J.R. Morante, A. Cabot, Tubular CoFeP@CN as a mott–Schottky catalyst with multiple adsorption sites for robust Lithium-Sulfur batteries, Adv. Energy Mater. 11(2021) 2100432. doi: 10.1002/aenm.202100432
|
[10] |
C. Ye, D. Chao, J. Shan, H. Li, K. Davey, S.-Z. Qiao, Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically, Matter 2(2020) 323–344. doi: 10.1016/j.matt.2019.12.020
|
[11] |
T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Multifunctional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries, Adv. Energy Mater. 7(2017) 1601843. doi: 10.1002/aenm.201601843
|
[12] |
Q. Li, D. Yang, H. Chen, X. Lv, Y. Jiang, Y. Feng, X. Rui, Y. Yu, Advances in metal phosphides for sodium-ion batteries, SusMat 1(2021) 359–392. doi: 10.1002/sus2.19
|
[13] |
Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S.Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y.-W. Mai, J.B. Goodenough, J. Li, Li metal deposition and stripping in a solid-state battery via Coble creep, Nature 578(2020) 251–255. doi: 10.1038/s41586-020-1972-y
|
[14] |
Y.-H. Wang, X.-T. Li, W.-P. Wang, H.-J. Yan, S. Xin, Y.-G. Guo, Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries, Sci. China Chem. 63(2020) 1402–1415. doi: 10.1007/s11426-020-9845-5
|
[15] |
H. Wang, Q. Zhang, H. Yao, Z. Liang, H.-W. Lee, P.-C. Hsu, G. Zheng, Y. Cui, High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials, Nano Lett. 14(2014) 7138–7144. doi: 10.1021/nl503730c
|
[16] |
Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang, Y. Cui, Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries, Nano Lett. 15(2015) 3780–3786. doi: 10.1021/acs.nanolett.5b00367
|
[17] |
W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma, X. Wang, W. Liu, Z. Li, Q.-H. Yang, W. Lv, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries, ACS Nano 15(2021) 7491–7499. doi: 10.1021/acsnano.1c00896
|
[18] |
J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries, Energy Environ. Sci. 12(2019) 344–350. doi: 10.1039/C8EE03252A
|
[19] |
L. Zhang, H.B. Wu, Y. Yan, X. Wang, X.W. Lou, Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting, Energy Environ. Sci. 7(2014) 3302–3306. doi: 10.1039/C4EE01932F
|
[20] |
X.-Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed. 54(2015) 7395–7398. doi: 10.1002/anie.201502117
|
[21] |
M. Zhen, S.-Q. Guo, B. Shen, Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium–sulfur batteries, ACS Sustain. Chem. Eng. 8(2020) 13318–13327. doi: 10.1021/acssuschemeng.0c03887
|
[22] |
Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang, Y. Zhao, H. Liu, P. Ji, X. Du, J. Li, Z. Chen, Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries, Adv. Mater. 32(2019) 1904876.
|
[23] |
D. Luo, Z. Zhang, G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, S. Sy, Y.P. Deng, Y. Jiang, Y. Zhu, H. Dou, Y. Hu, A. Yu, Z. Chen, Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5-x nanocluster toward superior Li-S performance, ACS Nano 14(2020) 4849–4860. doi: 10.1021/acsnano.0c00799
|
[24] |
H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G.W. Zheng, J.Y. Lee, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries, Energy Environ. Sci. 10(2017) 1476–1486. doi: 10.1039/C7EE01047H
|
[25] |
W. Chen, T. Lei, W. Lv, Y. Hu, Y. Yan, Y. Jiao, W. He, Z. Li, C. Yan, J. Xiong, Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium–sulfur battery, Adv. Mater. 30(2018) 1804084. doi: 10.1002/adma.201804084
|
[26] |
B. Li, Q. Su, L. Yu, J. Zhang, G. Du, D. Wang, D. Han, M. Zhang, S. Ding, B. Xu, Tuning the band structure of MoS2 via Co9S8@MoS2 core–shell structure to boost catalytic activity for lithium–sulfur batteries, ACS Nano 14(2020) 17285–17294. doi: 10.1021/acsnano.0c07332
|
[27] |
C.Y. Zhang, Z.W. Lu, Y.H. Wang, Z. Dai, H. Zhao, G.Z. Sun, W. Lan, X.J. Pan, J.Y. Zhou, E.Q. Xie, Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium–sulfur batteries, Chem. Eng. J. 392(2020) 123734. doi: 10.1016/j.cej.2019.123734
|
[28] |
M. Wang, L. Fan, D. Tian, X. Wu, Y. Qiu, C. Zhao, B. Guan, Y. Wang, N. Zhang, K. Sun, Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries, ACS Energy Lett. 3(2018) 1627–1633. doi: 10.1021/acsenergylett.8b00856
|
[29] |
M. Waqas, Y. Han, D. Chen, S. Ali, C. Zhen, C. Feng, B. Yuan, J. Han, W. He, Molecular 'capturing' and 'seizing' MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li–S batteries, Energy Stor. Mater. 27(2020) 333–341. doi: 10.1016/j.ensm.2020.02.015
|
[30] |
W.G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics, Angew. Chem. Int. Ed. 58(2019) 18746–18757. doi: 10.1002/anie.201902413
|
[31] |
Z. Xia, S. Guo, Strain engineering of metal-based nanomaterials for energy electrocatalysis, Chem. Soc. Rev. 48(2019) 3265–3278. doi: 10.1039/C8CS00846A
|
[32] |
M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater. 2(2017) 17059. doi: 10.1038/natrevmats.2017.59
|
[33] |
H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang, W. Wu, X. Chen, Y. Li, P. Ma, W. Dong, F. Duan, M. Chen, G. Wu, J. Wu, H. Yang, S. Guo, Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis, Adv. Mater. 30(2018) 1707301. doi: 10.1002/adma.201707301
|
[34] |
L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li, W. Lv, Y. Tao, Z. Chen, G. Zhou, J. Li, G. Ling, Y. Wan, Q.-H. Yang, Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries, Adv. Energy Mater. 9(2019) 1900219. doi: 10.1002/aenm.201900219
|
[35] |
D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang, S. Liu, J. Tang, J. Zhang, D. Liu, L. Zheng, Y. Kuang, X. Sun, B. Liu, NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis, Angew. Chem. Int. Ed. 58(2019) 736–740. doi: 10.1002/anie.201809689
|
[36] |
X. Li, W. Chen, Q. Qian, H. Huang, Y. Chen, Z. Wang, Q. Chen, J. Yang, J. Li, Y.-W. Mai, Electrospinning-based strategies for battery materials, Adv. Energy Mater. 11(2021) 2000845. doi: 10.1002/aenm.202000845
|
[37] |
C. Li, M. Qiu, R. Li, X. Li, M. Wang, J. He, G. Lin, L. Xiao, Q. Qian, Q. Chen, J. Wu, X. Li, Y.-W. Mai, Y. Chen, Electrospinning engineering enables high-performance sodium-ion batteries, Adv. Fiber Mater. 4(2022) 43–65. doi: 10.1007/s42765-021-00088-6
|
[38] |
A. Romano, E.S. Şuhubi, On Wulff's law about equilibrium configurations of crystals, Int. J. Eng. Sci. 27(1989) 1135–1142. doi: 10.1016/0020-7225(89)90093-1
|
[39] |
N.G. van der Berg, J.B. Malherbe, A.J. Botha, E. Friedland, Thermal etching of SiC, Appl. Surf. Sci. 258(2012) 5561–5566. doi: 10.1016/j.apsusc.2011.12.132
|
[40] |
A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, P. Yang, Core–shell CdS–Cu2S nanorod array solar cells, Nano Lett. 15(2015) 4096–4101. doi: 10.1021/acs.nanolett.5b01203
|
[41] |
S.G. Kwon, G. Krylova, P.J. Phillips, R.F. Klie, S. Chattopadhyay, T. Shibata, E.E. Bunel, Y. Liu, V.B. Prakapenka, B. Lee, E.V. Shevchenko, Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures, Nat. Mater. 14(2015) 215–223. doi: 10.1038/nmat4115
|
[42] |
D. Mukherjee, J.T.L. Gamler, S.E. Skrabalak, R.R. Unocic, Lattice strain measurement of Core@Shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction, ACS Catal. 10(2020) 5529–5541. doi: 10.1021/acscatal.0c00224
|
[43] |
M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy 74(1998) 131–146. doi: 10.1016/S0304-3991(98)00035-7
|
[44] |
H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When cubic cobalt sulfide meets layered molybdenum disulfide: a core–shell system toward synergetic electrocatalytic water splitting, Adv. Mater. 27(2015) 4752–4759. doi: 10.1002/adma.201501969
|
[45] |
A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, Local strain engineering in atomically thin MoS2, Nano Lett. 13(2013) 5361–5366. doi: 10.1021/nl402875m
|
[46] |
H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(2013) 3626–3630.
|
[47] |
S.-H. Chang, M.-D. Lu, Y.-L. Tung, H.-Y. Tuan, Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dyesensitized solar cells, ACS Nano 7(2013) 9443–9451. doi: 10.1021/nn404272j
|
[48] |
Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries, Nat. Commun. 8(2017) 14627.
|
[49] |
J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan, L. Chen, S. Niu, J. Cai, D. Sun, Y. Zhu, J. Du, G. Wang, Y. Qian, Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry, Joule 2(2018) 2681–2693. doi: 10.1016/j.joule.2018.08.010
|
[50] |
D. Yang, C. Zhang, J.J. Biendicho, X. Han, Z. Liang, R. Du, M. Li, J. Li, J. Arbiol, J. Llorca, Y. Zhou, J.R. Morante, A. Cabot, ZnSe/N-Doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries, ACS Nano 14(2020) 15492–15504.
|
[51] |
C.Y. Zhang, G.W. Sun, Y.F. Bai, Z. Dai, Y.R. Zhao, X.P. Gao, G.Z. Sun, X.B. Pan, X.J. Pan, J.Y. Zhou, Ultrastable lithium–sulfur batteries with outstanding rate capability boosted by NiAs-type vanadium sulfides, J. Mater. Chem. A 8(2020) 18358–18366.
|
[52] |
C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li, X. Yang, J. Arbiol, Y. Zhou, J.R. Morante, A. Cabot, Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries, Adv. Funct. Mater. 29(2019) 1903842.
|
[53] |
C.Y. Zhang, G.W. Sun, Z. De Shi, Q.Y. Liu, J.L. Pan, Y.C. Wang, H. Zhao, G.Z. Sun, X.P. Gao, X.J. Pan, J.Y. Zhou, Deciphering the catalysis essence of vanadium selfintercalated two-dimensional vanadium sulfides (V5S8) on lithium polysulfide towards high-rate and ultra-stable Li-S batteries, Energy Stor. Mater. 43(2021) 471–481.
|
[54] |
Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang, X. Zhang, Y. Li, J. Lai, Z. Sun, Y. Yang, Y. Chao, C. Li, X. Ge, W. Yang, S. Guo, Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries, Adv. Funct. Mater. 28(2018) 1707578. doi: 10.1002/adfm.201707578
|
[55] |
Y. Pan, L. Gong, X. Cheng, Y. Zhou, Y. Fu, J. Feng, H. Ahmed, H. Zhang, Layerspacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li–S batteries, ACS Nano 14(2020) 5917–5925. doi: 10.1021/acsnano.0c01124
|
[56] |
Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti, J. Gu, G. Yang, Z. Wu, J. Xie, M. Chen, L. Ni, G. Diao, Embedding cobalt atom clusters in CNT-wired MoS2 tubein-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries, Small 17(2021) 2102710.
|
[57] |
D.-A. Zhang, Q. Wang, Q. Wang, J. Sun, L.-L. Xing, X.-Y. Xue, High capacity and cyclability of hierarchical MoS2/SnO2 nanocomposites as the cathode of lithiumsulfur battery, Electrochim. Acta 173(2015) 476–482. doi: 10.1016/j.electacta.2015.05.086
|
[58] |
T. Tang, T. Zhang, L. Zhao, B. Zhang, W. Li, J. Xu, L. Zhang, H. Qiu, Y. Hou, Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li–S batteries, Mater. Chem. Front. 4(2020) 1483–1491.
|
[59] |
J. Wu, H. Zeng, X. Li, X. Xiang, Y. Liao, Z. Xue, Y. Ye, X. Xie, Ultralight layer-bylayer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites, Adv. Energy Mater. 8(2018) 1802430. doi: 10.1002/aenm.201802430
|
[60] |
S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao, H. Song, M. Zheng, Q. Sun, Z. Song, X. Jia, J. yang, Y. Li, J. Liao, R. Li, X. Sun, Insight into MoS2–Mon heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries, Adv. Energy Mater. 11(2021) 2003314.
|
[61] |
Y. Tang, Y. Huang, L. Luo, D. Fan, Y. Lu, A. Manthiram, Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries, Electrochim. Acta 367(2021) 137482. doi: 10.1016/j.electacta.2020.137482
|
[62] |
X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui, Y. Chen, T. Wang, L. Zheng, Y. Zhao, L. Shui, G. Zhou, K. Kempa, Y. Zhang, Z. Chen, Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process, Angew. Chem. Int. Ed. 60(2021) 2371–2378. doi: 10.1002/anie.202016891
|
[63] |
J. Wang, L. Jia, S. Duan, H. Liu, Q. Xiao, T. Li, H. Fan, K. Feng, J. Yang, Q. Wang, M. Liu, J. Zhong, W. Duan, H. Lin, Y. Zhang, Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode, Energy Stor. Mater. 28(2020) 375–382. doi: 10.1016/j.ensm.2020.03.023
|
[64] |
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q.-H. Yang, Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci. 10(2017) 1694–1703. doi: 10.1039/C7EE01430A
|
[65] |
T. Meng, J. Gao, J. Zhu, N. Li, M. Xu, C.M. Li, J. Jiang, Unearth the understanding of interfacial engineering techniques on nano sulfur cathodes for steady Li–S cell systems, J. Mater. Chem. A 8(2020) 11976–11985. doi: 10.1039/D0TA04592F
|
[66] |
S. Chen, J. Luo, N. Li, X. Han, J. Wang, Q. Deng, Z. Zeng, S. Deng, Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan, Energy Stor. Mater. 30(2020) 187–195 doi: 10.1016/j.ensm.2020.05.002
|