Turn off MathJax
Article Contents
Jingfeng Zheng, Jocelyn Elgin, Jieren Shao, Yiying Wu. Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes[J]. eScience. doi: 10.1016/j.esci.2022.10.002
Citation: Jingfeng Zheng, Jocelyn Elgin, Jieren Shao, Yiying Wu. Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes[J]. eScience. doi: 10.1016/j.esci.2022.10.002

Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes

doi: 10.1016/j.esci.2022.10.002
  • Received Date: 2022-03-01
  • Revised Date: 2022-08-30
  • Accepted Date: 2022-10-12
  • Available Online: 2022-10-18
  • Recently, antiperovskites such as Li2OHX (X = Cl, Br) have gained attention as possible solidstate electrolytes for use in all-solid-state batteries. Their low melting point allows for scalable manufacturing, making them more attractive than other inorganic solid-state electrolytes, and their high ion selectivity and good mechanical rigidity are superior to those of polymer electrolytes. However, there is significant variation of up to three orders of magnitude between reported ionic conductivities in different studies. One of the likely reasons is that studies have not separated Liion conduction contributions from the grain and the grain boundaries. Therefore, in this study, we present an electrochemical impedance analysis of Li-ion antiperovskites (Li2OHBr and Li2OHCl) prepared by different methods: cold press, hot press, and melt casting. We thereby separate the contributions from grain ionic conduction and grain boundary ionic conduction. While each method gives the same grain conductivity, the grain boundary conductivity depends on the preparation method. The largest improvement in grain boundary conductivity was found using the melt-casting method. These results provide an explanation for the reported variations in ionic conductivity.
  • loading
  • (1) L. Zhou, T.-T. Zuo, C. Y. Kwok, S. Y. Kim, A. Assoud, Q. Zhang, J. Janek, L. F. Nazar, High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes, Nat. Energy 7 (2022) 83–93.
    (2) Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy 5 (2020) 299–308.
    (3) J. A. Dawson, T. Famprikis, K. E. Johnston, Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects, J. Mater. Chem. A. 9 (2021) 18746– 18772.
    (4) W. Xia, Y. Zhao, F. Zhao, K. Adair, R. Zhao, S. Li, R. Zou, Y. Zhao, X. Sun, Antiperovskite electrolytes for solid-state batteries, Chem. Rev. 122 (2022) 3763–3819.
    (5) J. Zheng, H. Fang, L. Fan, Y. Ren, P. Jena, Y. Wu, Antiperovskite K3OI for K-ion solid state electrolyte, J. Phys. Chem. Lett. 12 (2021) 7120–7126.
    (6) Y. Xiao, K. Turcheniuk, A. Narla, A. Y. Song, X. Ren, A. Magasinski, A. Jain, S. Huang, H. Lee, G. Yushin, Electrolyte melt infiltration for scalable manufacturing of inorganic all-solidstate lithium-ion batteries, Nat. Mater. 20 (2021) 984–990.
    (7) F. Wang, H. A. Evans, K. Kim, L. Yin, Y. Li, P. C. Tsai, J. Liu, S. H. Lapidus, C. M. Brown, D. J. Siegel, Y. M. Chiang, Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl, Chem. Mater. 32 (2020) 8481–8491.
    (8) J. Zheng, B. Perry, Y. Wu, Antiperovskite superionic conductors: a critical review, ACS Materials Au. 1 (2021) 92–106.
    (9) Y. Li, W. Zhou, S. Xin, S. Li, J. Zhu, X. Lü, Z. Cui, Q. Jia, J. Zhou, Y. Zhao, J. B. Goodenough, Fluorine‐doped antiperovskite electrolyte for all‐solid‐state lithium‐ion batteries, Angew. Chem. Int. Ed. 128 (2016) 10119–10122.
    (10) K. Yoshikawa, T. Yamamoto, M. K. Sugumar, M. Motoyama, Y. Iriyama, Room temperature operation and high cycle stability of an all-solid-state lithium battery fabricated by cold pressing using soft Li2OHBr Solid Electrolyte, Energy & Fuels 35 (15) (2021) 12581–12587.
    (11) Z. D. Hood, H. Wang, A. Samuthira Pandian, J. K. Keum, C. Liang, Li2OHCl crystalline electrolyte for stable metallic lithium anodes, J. Am. Chem. Soc. 138 (2016) 1768–1771.
    (12) M. K. Sugumar, T. Yamamoto, M. Motoyama, Y. Iriyama, Room temperature synthesis of antiperovskite structured Li2OHBr, Solid State Ion. 349 (2020) 115298.
    (13) A. Koedtruad, M. A. Patino, N. Ichikawa, D. Kan, Y. Shimakawa, Crystal structures and ionic conductivity in Li2OHX (X = Cl, Br) Antiperovskites, J. Solid State Chem. 286 (2020) 121263.
    (14) A. Y. Song, Y. Xiao, K. Turcheniuk, P. Upadhya, A. Ramanujapuram, J. Benson, A. Magasinski, M. Olguin, L. Meda, O. Borodin, G. Yushin, Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups, Adv. Energy Mater. 8 (2018) 1700971.
    (15) G. Schwering, A. Hönnerscheid, L. van Wüllen, M. Jansen, High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 ≤ n ≤ 2) and Li3-n(OHn)Br (1 ≤ n ≤ 2) at ambient temperatures, Chem. Phys. Chem. 4 (2003) 343–348.
    (16) J. A. Dawson, P. Canepa, T. Famprikis, C. Masquelier, M. S. Islam, Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries, J. Am. Chem. Soc. 140 (2018) 362–368.
    (17) K. Shen, Y. Wang, J. Zhang, Y. Zong, G. Li, C. Zhao, H. Chen, Revealing the effect of grain boundary segregation on Li ion transport in polycrystalline anti-perovskite Li3ClO: a phase field study, Phys. Chem. Chem. Phys. 22 (2020) 3030–3036.
    (18) B. Chen, C. Xu, J. Zhou, Insights into grain boundary in lithium-rich anti-perovskite as solid electrolytes, J. Electrochem. Soc. 165 (2018) A3946–A3951.
    (19) I. Hanghofer, G. J. Redhammer, S. Rohde, I. Hanzu, A. Senyshyn, H. M. R. Wilkening, D. Rettenwander, Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries, Chem. Mater. 30 (2018) 8134–8144.
    (20) N. Xiao, X. Ren, M. He, W. D. McCulloch, Y. Wu, Probing mechanisms for inverse correlation between rate performance and capacity in K–O2 batteries, ACS Appl. Mater. Interfaces 9 (2017) 4301–4308.
    (21) R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces, Chem. Rev. 120 (2020) 6820–6877.
    (22) L. L. Wong, K. C. Phuah, R. Dai, H. Chen, W. S. Chew, S. Adams, Bond valence pathway analyzer-an automatic rapid screening tool for fast ion conductors within softBV, Chem. Mater. 33 (2021) 625–641.
    (23) H. Chen, L. L. Wong, S. Adams, Soft BV – a software tool for screening the materials genome of inorganic fast ion conductors, Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 75 (2019) 18–33.
    (24) P. Hartwig, W. Weppner, Ionic conductivities of lithium-halide-based quaternary compounds, Solid State Ion. 3–4 (1981) 249–254.
    (25) J. Howard, Z. D. Hood, N. A. W. Holzwarth, Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment, Phys. Rev. Mater. 1 (2017) 075406.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (41) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return