Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Chuai Mingyan, Yang Jinlong, Wang Mingming, Yuan Yuan, Liu Zaichun, Xu Yan, Yin Yichen, Sun Jifei, Zheng Xinhua, Chen Na, Chen Wei. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2[J]. eScience, 2021, 1(2): 178-185. doi: 10.1016/j.esci.2021.11.002
Citation: Chuai Mingyan, Yang Jinlong, Wang Mingming, Yuan Yuan, Liu Zaichun, Xu Yan, Yin Yichen, Sun Jifei, Zheng Xinhua, Chen Na, Chen Wei. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2[J]. eScience, 2021, 1(2): 178-185. doi: 10.1016/j.esci.2021.11.002

High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2

doi: 10.1016/j.esci.2021.11.002
More Information
  • Corresponding author: Jinlong Yang, E-mail addresses: yangjl18@szu.edu.cn; Wei Chen, E-mail addresses: weichen1@ustc.edu.cn
  • Received Date: 2021-08-25
  • Revised Date: 2021-10-02
  • Accepted Date: 2021-11-01
  • Available Online: 2021-11-06
  • Electrolytic MnO2/Zn batteries have attracted extensive attention for use in large-scale energy storage applications due to their low cost, high output voltage, safety, and environmental friendliness. However, the poor electrical conductivity of MnO2 limits its deposition and dissolution at large capacities, which leads to sluggish reaction kinetics and drastic capacity decay. Here, we report a theory-guided design principle for an electrolytic MnO2/Zn battery co-regulated with transition metal ions that has improved electrochemical performance in terms of deposition and stripping chemistries. We start with first-principles calculations to predict the electrolytic effects of regulating transition metal ions in the deposition/stripping chemistry of the MnO2 cathode. The results indicate that with the simultaneous incorporation of strongly electronegative Co and Ni, the MnO2 cathode tends to possess more active electron states, faster charge-transfer kinetics, and better electrical conductivity than either MnO2 regulated with Co or Ni on their own, or pristine MnO2; hence, this co-regulation is beneficial for the cathode solid/liquid MnO2/Mn2+ reactions. We then fabricate and demonstrate a novel Co2+ and Ni2+ co-regulated MnO2/Zn (Co–Ni–MnO2/Zn) battery that yields significantly better electrochemical performance, finding that the synergistic regulation of Co and Ni on MnO2 can significantly increase its intrinsic conductivity and achieve high rates and Coulombic efficiencies at large capacities. The aqueous Co–Ni–MnO2/Zn battery exhibits a high rate (10C, 100 mA cm–2), high Coulombic efficiency (91.89%), and excellent cycling stability (600 cycles without decay) at a large areal capacity of 10 mAh cm–2. Our proposed strategy of co-regulation with transition metal ions offers a versatile approach for improving the electrochemical performance of aqueous electrolytic MnO2/Zn batteries in large-scale energy storage applications.
  • • The Co-Ni-MnO2/Zn battery exhibits a high Coulombic efficiency and excellent cycling stability at 10 mAh cm–2.
    • The multi-active electron states and fast charge-transfer kinetics of Co-Ni-MnO2 are beneficial to MnO2/Mn2+ reactions.
    • Developing a transition metal ions co-regulated electrolytic MnO2/Zn battery.
    • Providing new approaches toward high performance aqueous batteries for large-scale energy storage applications.
  • loading
  • eScience-2021-1-178-1-s2.0-S2667141721000239-mmc1.docx
  • [1]
    T.M. Gur, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, Energy Environ. Sci. 11 (2018) 2696–2767. doi: 10.1039/C8EE01419A
    [2]
    Y. Chen, M.Y. Zhou, Y.H. Xia, et al., A stable and high-capacity redox targetingbased electrolyte for aqueous flow batteries, Joule 3 (2019) 2255–2267. doi: 10.1016/j.joule.2019.06.007
    [3]
    Y.F. Huang, J. Mou, W.B. Liu, et al., Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+, Nano-Micro Lett. 11 (2019) 49. doi: 10.1007/s40820-019-0278-9
    [4]
    X.F. Shen, X.N. Wang, Y.R. Zhou, et al., Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution, Adv. Funct. Mater. 31 (2021), 2101579. doi: 10.1002/adfm.202101579
    [5]
    J.T. Meng, Q. Tang, L.Y. Zhou, et al., A stirred self-stratified battery for large-scale energy storage, Joule 4 (2020) 953–966. doi: 10.1016/j.joule.2020.03.011
    [6]
    H.P. Pan, Y.Y. Shao, P.F. Yan, et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nat. Energy. 18 (2016) 16039. https://www.nature.com/articles/nenergy201639/
    [7]
    Q.L. Wei, F.Y. Xiong, S.S. Tan, et al., Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage, Adv. Mater. 29 (2017), 1602300. doi: 10.1002/adma.201602300
    [8]
    N. Zhang, F.Y. Cheng, J.X. Liu, et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nat. Commun. 8 (2017) 405. doi: 10.1038/s41467-017-00467-x
    [9]
    K.W. Nam, H. Kim, J.H. Choi, et al., Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries, Energy Environ. Sci. 12 (2019) 1999–2009. doi: 10.1039/C9EE00718K
    [10]
    G.J. Liang, F.N. Mo, H.F. Li, et al., A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism, Adv. Energy Mater. 9 (2019), 1901838. doi: 10.1002/aenm.201901838
    [11]
    T. Xiong, Z.G. Yu, H.J. Wu, et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery, Adv. Energy Mater. 9 (2019), 1803815. doi: 10.1002/aenm.201803815
    [12]
    D.L. Chao, W.H. Zhou, C. Ye, et al., An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed. 58 (2019) 7823–7828. doi: 10.1002/anie.201904174
    [13]
    G.G. Yadav, D. Turney, J.C. Huang, et al., Breaking the 2 V barrier in aqueous zinc chemistry: Creating 2.45 and 2.8 V MnO2-Zn aqueous batteries, ACS Energy Lett. 4 (2019) 2144–2146. doi: 10.1021/acsenergylett.9b01643
    [14]
    Y. Zhang, S.J. Deng, Y.H. Li, et al., Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries, Energy Storage Mater. 29 (2020) 52–59. doi: 10.1016/j.ensm.2020.04.003
    [15]
    L.X. Dai, Y. Wang, L. Sun, et al., Jahn-Teller distortion induced Mn2+-rich cathode enables optimal flexible aqueous high-voltage Zn-Mn batteries, Adv. Sci. 8 (2021), 2004995. doi: 10.1002/advs.202004995
    [16]
    L.T. Ma, Q. Li, Y.R. Ying, et al., Toward practical high-areal-capacity aqueous zincmetal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater. 33 (2021), 2007406. doi: 10.1002/adma.202007406
    [17]
    X.H. Zeng, J.T. Liu, J.F. Mao, et al., Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry, Adv. Energy Mater. 10 (2020), 1904163. doi: 10.1002/aenm.201904163
    [18]
    X.Y. Tao, J. Du, Y. Sun, et al., Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte, Adv. Funct. Mater. 23 (2013) 4745–4751.
    [19]
    W. Chen, G.D. Li, A. Pei, et al., A manganese-hydrogen battery with potential for grid-scale energy storage, Nat. Energy 3 (2018) 428–435. doi: 10.1038/s41560-018-0147-7
    [20]
    H.J. Yang, Z. Chang, Y. Qiao, et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed. 59 (2020) 9377–9381. doi: 10.1002/anie.202001844
    [21]
    G.J. Liang, F.N. Mo, H.F. Li, et al., Commencing mild Ag-Zn batteries with long-term stability and ultra-flat voltage platform, Energy Storage Mater. 9 (2019), 1901838. https://www.sciencedirect.com/science/article/abs/pii/S240582971931030X
    [22]
    G.G. Yadav, X. Wei, J.C. Huang, et al., A conversion-based highly energy dense Cu2+ intercalated Bi-birnessite/Zn alkaline battery, J. Mater. Chem. A 5 (2017) 15845–15854. doi: 10.1039/C7TA05347A
    [23]
    D.L. Chao, C. Ye, F.X. Xie, et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density, Adv. Mater. (2020), 2001894. doi: 10.1002/adma.202001894
    [24]
    G.D. Li, W. Chen, H. Zhang, et al., Membrane-free Zn/MnO2 flow battery for largescale energy storage, Adv. Energy Mater. (2020), 1902085. doi: 10.1002/aenm.201902085
    [25]
    Z.M. Zhao, J.W. Zhao, Z.L. Hu, et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci. 12 (2019) 1938–1949. doi: 10.1039/C9EE00596J
    [26]
    L. Ma, L.P. Li, Y.N. Liu, et al., Building better rechargeable Zn-Mn batteries with a highly active Mn3O4/carbon nanowire cathode and neutral Na2SO4/MnSO4 electrolyte, Chem. Commun. 54 (2018) 10835–10838. doi: 10.1039/C8CC05550E
    [27]
    J. Wang, B.Y. Tian, Z.R. Niu, et al., Synthesis of nano-sized Zn-Mn ferrite from the resulting bioleachate of obsolete Zn-Mn batteries at a high pulp density of 5.0% enhanced by the added Fe3+, J. Clean Prod. 229 (2019) 299–307. doi: 10.1016/j.jclepro.2019.05.060
    [28]
    N. Loukil, M. Feki, Zn-Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn-Mn electrodeposition-morphological and structural characterization, Appl. Surf. Sci. 410 (2017) 574–584. doi: 10.1016/j.apsusc.2017.02.075
    [29]
    C. Zhong, B. Liu, J. Ding, et al., Decoupling electrolytes towards stable and high energy rechargeable aqueous zinc–manganese dioxide batteries, Nat. Energy 5 (2020) 440–449. doi: 10.1038/s41560-020-0584-y
    [30]
    M. Mateos, N. Makivic, Y.S. Kim, et al., Accessing the Two-Electron Charge Storage Capacity of MnO2 in Mild Aqueous Electrolytes, Adv. Energy Mater. 10 (2020), 2000332. doi: 10.1002/aenm.202000332
    [31]
    M.Y. Chuai, T.Y. Yang, M.Z. Zhang, Quantum capacitance of CuS: Ce3+ quantum dots as high-performing supercapacitor electrodes, J. Mater. Chem. A 6 (2018) 6534–6541. doi: 10.1039/C8TA01388H
    [32]
    M.Y. Chuai, K.W. Zhang, X. Chen, et al., Effect of nondegeneracy on Ni3-xCoxS4 for high performance supercapacitor, Chem. Eng. J. 381 (2020), 122682. doi: 10.1016/j.cej.2019.122682
    [33]
    J. Ji, H.Z. Wan, B. Zhang, et al., Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries, Adv. Energy Mater. 11 (2021), 2003203. doi: 10.1002/aenm.202003203
    [34]
    D.F. Ying, Q.L. Xu, R. Ding, et al., Insight into pseudocapacitive-diffusion mixed kinetics and conversion alloying hybrid mechanisms of low-cost Zn-Mn perovskite fluorides anodes for powerful Li-ion/dual-ion storage, Chem. Eng. J. 388 (2020), 124154. doi: 10.1016/j.cej.2020.124154
    [35]
    T. Xiong, M.K. Zhu, Y.X. Zhang, et al., Interlayer engineering of mno2 with high charge density Bi3+ for high rate and stable aqueous supercapacitor, Batteries Supercaps. 3 (2020) 519–526. doi: 10.1002/batt.202000007
    [36]
    J. Deng, Q.F. Gong, H.L. Ye, et al., ACS Nano 12 (2018) 1829–1836.
    [37]
    M.Y. Chuai, X. Chen, K.W. Zhang, et al., CuO-SnO2 reverse cubic heterojunctions as high performance supercapacitor electrodes, J. Mater. Chem. A 7 (2019) 1160–1167. doi: 10.1039/C8TA10442E
    [38]
    R. Zhao, P. Wang, T.Y. Yang, et al., Half Metallic Ferromagnetism in Eu-Doped CdS Nanoparticles, J. Phys. Chem. C. 119 (2015) 28679–28684. doi: 10.1021/acs.jpcc.5b10444
    [39]
    M.A. Awad, N.M.A. Hadia, Towards understanding the morphological, magnetic, optical and electrical properties of MnO2 nanowires for magneto-and optoelectronic applications, J. Mater Sci-Mate. El. 29 (2018) 20695–20702. doi: 10.1007/s10854-018-0209-4
    [40]
    T.Z. Li, Z.G. Wang, D.F. Jiang, et al., A FRET biosensor based on MnO2 nanosphere/ copper nanocluster complex: From photoluminescence quenching to recovery and magnification, Sens. Actuators B Chem. 290 (2019) 535–543. doi: 10.1016/j.snb.2019.04.033
    [41]
    H. Salari, Efficient photocatalytic degradation of environmental pollutant with enhanced photocarrier separation in novel Z-scheme α-MnO2 nanorod/α-MoO3 nanocomposites, J. Photoch. Photobio. A. Chem. 401 (2020), 112787. doi: 10.1016/j.jphotochem.2020.112787
    [42]
    S. Rada, D. Cuibus, H. Vermesan, et al., Structural and electrochemical properties of recycled active electrodes from spent lead acid battery and modified with different manganese dioxide contents, Electrochim. Acta 268 (2018) 332–339. doi: 10.1016/j.electacta.2018.02.135
    [43]
    M. Sun, B. Lan, T. Lin, et al., Controlled synthesis of nanostructured manganese oxide: Crystalline evolution and catalytic activities, CrystEngComm 15 (2013) 7010–7018. doi: 10.1039/c3ce40603b
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (430) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return