Citation: | Chuai Mingyan, Yang Jinlong, Wang Mingming, Yuan Yuan, Liu Zaichun, Xu Yan, Yin Yichen, Sun Jifei, Zheng Xinhua, Chen Na, Chen Wei. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2[J]. eScience, 2021, 1(2): 178-185. doi: 10.1016/j.esci.2021.11.002 |
![]() |
![]() |
[1] |
T.M. Gur, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, Energy Environ. Sci. 11 (2018) 2696–2767. doi: 10.1039/C8EE01419A
|
[2] |
Y. Chen, M.Y. Zhou, Y.H. Xia, et al., A stable and high-capacity redox targetingbased electrolyte for aqueous flow batteries, Joule 3 (2019) 2255–2267. doi: 10.1016/j.joule.2019.06.007
|
[3] |
Y.F. Huang, J. Mou, W.B. Liu, et al., Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+, Nano-Micro Lett. 11 (2019) 49. doi: 10.1007/s40820-019-0278-9
|
[4] |
X.F. Shen, X.N. Wang, Y.R. Zhou, et al., Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution, Adv. Funct. Mater. 31 (2021), 2101579. doi: 10.1002/adfm.202101579
|
[5] |
J.T. Meng, Q. Tang, L.Y. Zhou, et al., A stirred self-stratified battery for large-scale energy storage, Joule 4 (2020) 953–966. doi: 10.1016/j.joule.2020.03.011
|
[6] |
H.P. Pan, Y.Y. Shao, P.F. Yan, et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nat. Energy. 18 (2016) 16039. https://www.nature.com/articles/nenergy201639/
|
[7] |
Q.L. Wei, F.Y. Xiong, S.S. Tan, et al., Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage, Adv. Mater. 29 (2017), 1602300. doi: 10.1002/adma.201602300
|
[8] |
N. Zhang, F.Y. Cheng, J.X. Liu, et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nat. Commun. 8 (2017) 405. doi: 10.1038/s41467-017-00467-x
|
[9] |
K.W. Nam, H. Kim, J.H. Choi, et al., Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries, Energy Environ. Sci. 12 (2019) 1999–2009. doi: 10.1039/C9EE00718K
|
[10] |
G.J. Liang, F.N. Mo, H.F. Li, et al., A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism, Adv. Energy Mater. 9 (2019), 1901838. doi: 10.1002/aenm.201901838
|
[11] |
T. Xiong, Z.G. Yu, H.J. Wu, et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery, Adv. Energy Mater. 9 (2019), 1803815. doi: 10.1002/aenm.201803815
|
[12] |
D.L. Chao, W.H. Zhou, C. Ye, et al., An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed. 58 (2019) 7823–7828. doi: 10.1002/anie.201904174
|
[13] |
G.G. Yadav, D. Turney, J.C. Huang, et al., Breaking the 2 V barrier in aqueous zinc chemistry: Creating 2.45 and 2.8 V MnO2-Zn aqueous batteries, ACS Energy Lett. 4 (2019) 2144–2146. doi: 10.1021/acsenergylett.9b01643
|
[14] |
Y. Zhang, S.J. Deng, Y.H. Li, et al., Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries, Energy Storage Mater. 29 (2020) 52–59. doi: 10.1016/j.ensm.2020.04.003
|
[15] |
L.X. Dai, Y. Wang, L. Sun, et al., Jahn-Teller distortion induced Mn2+-rich cathode enables optimal flexible aqueous high-voltage Zn-Mn batteries, Adv. Sci. 8 (2021), 2004995. doi: 10.1002/advs.202004995
|
[16] |
L.T. Ma, Q. Li, Y.R. Ying, et al., Toward practical high-areal-capacity aqueous zincmetal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater. 33 (2021), 2007406. doi: 10.1002/adma.202007406
|
[17] |
X.H. Zeng, J.T. Liu, J.F. Mao, et al., Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry, Adv. Energy Mater. 10 (2020), 1904163. doi: 10.1002/aenm.201904163
|
[18] |
X.Y. Tao, J. Du, Y. Sun, et al., Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte, Adv. Funct. Mater. 23 (2013) 4745–4751.
|
[19] |
W. Chen, G.D. Li, A. Pei, et al., A manganese-hydrogen battery with potential for grid-scale energy storage, Nat. Energy 3 (2018) 428–435. doi: 10.1038/s41560-018-0147-7
|
[20] |
H.J. Yang, Z. Chang, Y. Qiao, et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed. 59 (2020) 9377–9381. doi: 10.1002/anie.202001844
|
[21] |
G.J. Liang, F.N. Mo, H.F. Li, et al., Commencing mild Ag-Zn batteries with long-term stability and ultra-flat voltage platform, Energy Storage Mater. 9 (2019), 1901838. https://www.sciencedirect.com/science/article/abs/pii/S240582971931030X
|
[22] |
G.G. Yadav, X. Wei, J.C. Huang, et al., A conversion-based highly energy dense Cu2+ intercalated Bi-birnessite/Zn alkaline battery, J. Mater. Chem. A 5 (2017) 15845–15854. doi: 10.1039/C7TA05347A
|
[23] |
D.L. Chao, C. Ye, F.X. Xie, et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density, Adv. Mater. (2020), 2001894. doi: 10.1002/adma.202001894
|
[24] |
G.D. Li, W. Chen, H. Zhang, et al., Membrane-free Zn/MnO2 flow battery for largescale energy storage, Adv. Energy Mater. (2020), 1902085. doi: 10.1002/aenm.201902085
|
[25] |
Z.M. Zhao, J.W. Zhao, Z.L. Hu, et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci. 12 (2019) 1938–1949. doi: 10.1039/C9EE00596J
|
[26] |
L. Ma, L.P. Li, Y.N. Liu, et al., Building better rechargeable Zn-Mn batteries with a highly active Mn3O4/carbon nanowire cathode and neutral Na2SO4/MnSO4 electrolyte, Chem. Commun. 54 (2018) 10835–10838. doi: 10.1039/C8CC05550E
|
[27] |
J. Wang, B.Y. Tian, Z.R. Niu, et al., Synthesis of nano-sized Zn-Mn ferrite from the resulting bioleachate of obsolete Zn-Mn batteries at a high pulp density of 5.0% enhanced by the added Fe3+, J. Clean Prod. 229 (2019) 299–307. doi: 10.1016/j.jclepro.2019.05.060
|
[28] |
N. Loukil, M. Feki, Zn-Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn-Mn electrodeposition-morphological and structural characterization, Appl. Surf. Sci. 410 (2017) 574–584. doi: 10.1016/j.apsusc.2017.02.075
|
[29] |
C. Zhong, B. Liu, J. Ding, et al., Decoupling electrolytes towards stable and high energy rechargeable aqueous zinc–manganese dioxide batteries, Nat. Energy 5 (2020) 440–449. doi: 10.1038/s41560-020-0584-y
|
[30] |
M. Mateos, N. Makivic, Y.S. Kim, et al., Accessing the Two-Electron Charge Storage Capacity of MnO2 in Mild Aqueous Electrolytes, Adv. Energy Mater. 10 (2020), 2000332. doi: 10.1002/aenm.202000332
|
[31] |
M.Y. Chuai, T.Y. Yang, M.Z. Zhang, Quantum capacitance of CuS: Ce3+ quantum dots as high-performing supercapacitor electrodes, J. Mater. Chem. A 6 (2018) 6534–6541. doi: 10.1039/C8TA01388H
|
[32] |
M.Y. Chuai, K.W. Zhang, X. Chen, et al., Effect of nondegeneracy on Ni3-xCoxS4 for high performance supercapacitor, Chem. Eng. J. 381 (2020), 122682. doi: 10.1016/j.cej.2019.122682
|
[33] |
J. Ji, H.Z. Wan, B. Zhang, et al., Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries, Adv. Energy Mater. 11 (2021), 2003203. doi: 10.1002/aenm.202003203
|
[34] |
D.F. Ying, Q.L. Xu, R. Ding, et al., Insight into pseudocapacitive-diffusion mixed kinetics and conversion alloying hybrid mechanisms of low-cost Zn-Mn perovskite fluorides anodes for powerful Li-ion/dual-ion storage, Chem. Eng. J. 388 (2020), 124154. doi: 10.1016/j.cej.2020.124154
|
[35] |
T. Xiong, M.K. Zhu, Y.X. Zhang, et al., Interlayer engineering of mno2 with high charge density Bi3+ for high rate and stable aqueous supercapacitor, Batteries Supercaps. 3 (2020) 519–526. doi: 10.1002/batt.202000007
|
[36] |
J. Deng, Q.F. Gong, H.L. Ye, et al., ACS Nano 12 (2018) 1829–1836.
|
[37] |
M.Y. Chuai, X. Chen, K.W. Zhang, et al., CuO-SnO2 reverse cubic heterojunctions as high performance supercapacitor electrodes, J. Mater. Chem. A 7 (2019) 1160–1167. doi: 10.1039/C8TA10442E
|
[38] |
R. Zhao, P. Wang, T.Y. Yang, et al., Half Metallic Ferromagnetism in Eu-Doped CdS Nanoparticles, J. Phys. Chem. C. 119 (2015) 28679–28684. doi: 10.1021/acs.jpcc.5b10444
|
[39] |
M.A. Awad, N.M.A. Hadia, Towards understanding the morphological, magnetic, optical and electrical properties of MnO2 nanowires for magneto-and optoelectronic applications, J. Mater Sci-Mate. El. 29 (2018) 20695–20702. doi: 10.1007/s10854-018-0209-4
|
[40] |
T.Z. Li, Z.G. Wang, D.F. Jiang, et al., A FRET biosensor based on MnO2 nanosphere/ copper nanocluster complex: From photoluminescence quenching to recovery and magnification, Sens. Actuators B Chem. 290 (2019) 535–543. doi: 10.1016/j.snb.2019.04.033
|
[41] |
H. Salari, Efficient photocatalytic degradation of environmental pollutant with enhanced photocarrier separation in novel Z-scheme α-MnO2 nanorod/α-MoO3 nanocomposites, J. Photoch. Photobio. A. Chem. 401 (2020), 112787. doi: 10.1016/j.jphotochem.2020.112787
|
[42] |
S. Rada, D. Cuibus, H. Vermesan, et al., Structural and electrochemical properties of recycled active electrodes from spent lead acid battery and modified with different manganese dioxide contents, Electrochim. Acta 268 (2018) 332–339. doi: 10.1016/j.electacta.2018.02.135
|
[43] |
M. Sun, B. Lan, T. Lin, et al., Controlled synthesis of nanostructured manganese oxide: Crystalline evolution and catalytic activities, CrystEngComm 15 (2013) 7010–7018. doi: 10.1039/c3ce40603b
|