Citation: | Zhao Meng, Li Xi-Yao, Chen Xiang, Li Bo-Quan, Kaskel Stefan, Zhang Qiang, Huang Jia-Qi. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries[J]. eScience, 2021, 1(1): 44-52. doi: 10.1016/j.esci.2021.08.001 |
![]() |
![]() |
[1] |
Q. Li, H.S. Li, Q.T. Xia, et al., Extra storage capacity in transition metal oxide lithium–ion batteries revealed by in situ magnetometry, Nat. Mater. 20 (2021) 76-83. doi: 10.1038/s41563-020-0756-y
|
[2] |
Y. Wang, D. Zhou, V. Palomares, et al., Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review, Energy Environ. Sci. 13 (2020) 3848-3879. doi: 10.1039/D0EE02203A
|
[3] |
G.M. Zhou, A.K. Yang, G.P. Gao, et al., Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li–S batteries, Sci. Adv. 6 (2020) eaay5098. doi: 10.1126/sciadv.aay5098
|
[4] |
P.D. Frischmann, Y. Hwa, E.J. Cairns, B.A. Helms, Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando, Chem. Mater. 28 (2016) 7414-7421. doi: 10.1021/acs.chemmater.6b03013
|
[5] |
H. Ye, J.Y. Lee, Solid additives for improving the performance of sulfur cathodes in lithium–sulfur batteries—adsorbents, mediators, and catalysts, Small Methods 4 (2020) 1900864. doi: 10.1002/smtd.201900864
|
[6] |
C. Zhao, G.L. Xu, Z. Yu, et al., A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites, Nat. Nanotechnol. 16 (2020) 166-173.
|
[7] |
W.J. Xue, D.W. Yu, L.M. Suo, et al., Manipulating sulfur mobility enables advanced Li–S batteries, Matter 1 (2019) 1047-1060. doi: 10.1016/j.matt.2019.07.002
|
[8] |
X.D. Hong, R. Wang, Y. Liu, J.W. Fu, J. Liang, S.X. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries, J. Energy Chem. 42 (2020) 144-168. doi: 10.1016/j.jechem.2019.07.001
|
[9] |
G. Babu, N. Masurkar, H. Al Salem, L.M. Arava, Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis, J. Am. Chem. Soc. 139 (2017) 171-178. doi: 10.1021/jacs.6b08681
|
[10] |
W. Liu, C. Luo, S. Zhang, et al., Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries, ACS Nano 15 (2021) 7491-7499. doi: 10.1021/acsnano.1c00896
|
[11] |
X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries, Adv. Mater. 29 (2017) 1601759. doi: 10.1002/adma.201601759
|
[12] |
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries, Nat. Commun. 5 (2014) 5682-5690.
|
[13] |
M. Zhao, H.J. Peng, B.Q. Li, et al., Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion, Angew. Chem. Int. Ed. 59 (2020) 9011-9017. doi: 10.1002/anie.202003136
|
[14] |
Y.R. Zhong, L.C. Yin, P. He, et al., Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries, J. Am. Chem. Soc. 140 (2018) 1455-1459. doi: 10.1021/jacs.7b11434
|
[15] |
H. Al Salem, G. Babu, C.V. Rao, L.M. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries, J. Am. Chem. Soc. 137 (2015) 11542-11545. doi: 10.1021/jacs.5b04472
|
[16] |
M.D. Zhang, C. Yu, C.T. Zhao, et al., Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery, Energy Storage Mater. 5 (2016) 223-229. doi: 10.1016/j.ensm.2016.04.002
|
[17] |
B.Q. Li, H.J. Peng, X. Chen, et al., Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium–sulfur batteries, CCS Chem. 1 (2019) 128-137.
|
[18] |
L.L. Peng, Z. Wei, C. Wan, et al., A fundamental look at electrocatalytic sulfur reduction reaction, Nat. Catal. 3 (2020) 762-770. doi: 10.1038/s41929-020-0498-x
|
[19] |
H. Tang, L. You, J.W. Liu, et al., Integrated polypyrrole@sulfur@graphene aerogel 3D architecture via advanced vapor polymerization for high-performance lithium–sulfur batteries, ACS Appl. Mater. Interfaces 11 (2019) 18448-18455. doi: 10.1021/acsami.9b04167
|
[20] |
J. Zhang, J.Y. Li, W.P. Wang, et al., Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries, Adv. Energy Mater. 8 (2018) 1702839. doi: 10.1002/aenm.201702839
|
[21] |
Y. Zhang, G. Li, J. Wang, et al., "Sauna" activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium–sulfur batteries, Adv. Energy Mater. 11 (2021) 2100497. doi: 10.1002/aenm.202100497
|
[22] |
Z. Du, X. Chen, W. Hu, et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries, J. Am. Chem. Soc. 141 (2019) 3977-3985. doi: 10.1021/jacs.8b12973
|
[23] |
B.Q. Li, L. Kong, C.X. Zhao, et al., Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries, InfoMat 1 (2019) 533-541. doi: 10.1002/inf2.12056
|
[24] |
F.F. Wang, J. Li, J. Zhao, et al., Single-atom electrocatalysts for lithium sulfur batteries: progress, opportunities, and challenges, ACS Mater. Lett. 2 (2020) 1450-1463. doi: 10.1021/acsmaterialslett.0c00396
|
[25] |
J. Xie, B.Q. Li, H.J. Peng, et al., Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries, Adv. Mater. 31 (2019) 1903813. doi: 10.1002/adma.201903813
|
[26] |
G.M. Zhou, S.Y. Zhao, T.S. Wang, et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries, Nano Lett. 20 (2020) 1252-1261. doi: 10.1021/acs.nanolett.9b04719
|
[27] |
Z.C. Zhuang, Q. Kang, D.S. Wang, Y.D. Li, Single-atom catalysis enables long-life, high-energy lithium–sulfur batteries, Nano Res. 13 (2020) 1856-1866. doi: 10.1007/s12274-020-2827-4
|
[28] |
S. Hussain, X.Y. Yang, M.K. Aslam, et al., Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations, Chem. Eng. J. 391 (2020) 123595. doi: 10.1016/j.cej.2019.123595
|
[29] |
S.Y. Li, W.P. Wang, H. Duan, Y.G. Guo, Recent progress on confinement of polysulfides through physical and chemical methods, J. Energy Chem. 27 (2018) 1555-1565. doi: 10.1016/j.jechem.2018.04.014
|
[30] |
H.Q. Wang, W.C. Zhang, J.Z. Xu, Z.P. Guo, Advances in polar materials for lithium–sulfur batteries, Adv. Funct. Mater. 28 (2018) 1707520. doi: 10.1002/adfm.201707520
|
[31] |
L.N. Wang, Y.X. Lin, S. DeCarlo, et al., Compositions and formation mechanisms of solid-electrolyte interphase on microporous carbon/sulfur cathodes, Chem. Mater. 32 (2020) 3765-3775. doi: 10.1021/acs.chemmater.9b05027
|
[32] |
J.S. Yeon, Y.H. Ko, T.H. Park, et al., Multidimensional hybrid architecture encapsulating cobalt oxide nanoparticles into carbon nanotube branched nitrogen-doped reduced graphene oxide networks for lithium–sulfur batteries, Energy Environ. Mater. (2021), doi: 10.1002/eem2.12187.
|
[33] |
T.H. Zhou, W. Lv, J. Li, et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci. 10 (2017) 1694-1703. doi: 10.1039/C7EE01430A
|
[34] |
Y. Zhu, G. Li, D. Luo, et al., Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium–sulfur batteries, Nano Energy 79 (2021) 105393. doi: 10.1016/j.nanoen.2020.105393
|
[35] |
H. Yuan, H.J. Peng, B.Q. Li, et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries, Adv. Energy Mater. 9 (2019) 1802768. doi: 10.1002/aenm.201802768
|
[36] |
Z.W. Zhang, H.J. Peng, M. Zhao, J.Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects, Adv. Funct. Mater. 28 (2018) 1707536. doi: 10.1002/adfm.201707536
|
[37] |
J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium–sulfur batteries, Energy Storage Mater. 20 (2019) 55-70. doi: 10.1016/j.ensm.2019.04.038
|
[38] |
M. Li, Z.Y. Bai, Y.J. Li, et al., Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte, Nat. Commun. 10 (2019) 1890. doi: 10.1038/s41467-019-09638-4
|
[39] |
X. Wu, N.N. Liu, B. Guan, et al., Redox mediator: a new strategy in designing cathode for prompting redox process of Li–S batteries, Adv. Sci. 6 (2019) 1900958. doi: 10.1002/advs.201900958
|
[40] |
M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries, ACS Cent. Sci. 6 (2020) 1095-1104. doi: 10.1021/acscentsci.0c00449
|
[41] |
Y. Tsao, M. Lee, E.C. Miller, et al., Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries, Joule 3 (2019) 872-884. doi: 10.1016/j.joule.2018.12.018
|
[42] |
K.R. Kim, K.S. Lee, C.Y. Ahn, S.H. Yu, Y.E. Sung, Discharging a Li–S battery with ultra-high sulphur content cathode using a redox mediator, Sci. Rep. 6 (2016) 32433. doi: 10.1038/srep32433
|
[43] |
M. Zhao, H.J. Peng, J.Y. Wei, et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfde growth, Small Methods 4 (2020) 1900344. doi: 10.1002/smtd.201900344
|
[44] |
C.X. Zhao, W.J. Chen, M. Zhao, et al., Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes, EcoMat 3 (2020) e12066.
|
[45] |
J.F. Li, L.Q. Yang, S.L. Yang, J.Y. Lee, The application of redox targeting principles to the design of rechargeable Li–S flow batteries, Adv. Energy Mater. 5 (2015) 1501808. doi: 10.1002/aenm.201501808
|
[46] |
A.G. Tamirat, X. Guan, J. Liu, J. Luo, Y.Y. Xia, Redox mediators as charge agents for changing electrochemical reactions, Chem. Soc. Rev. 49 (2020) 7454-7478. doi: 10.1039/D0CS00489H
|
[47] |
W. Xue, D. Yu, L. Suo, et al., Manipulating sulfur mobility enables advanced Li-S batteries, Matter 1 (2019) 1047-1060. doi: 10.1016/j.matt.2019.07.002
|
[48] |
S.R. Chen, D.W. Wang, Y.M. Zhao, D.H. Wang, Superior performance of a lithium-sulfur battery enabled by a dimethyl trisulfide containing electrolyte, Small Methods 2 (2018) 1800038.
|
[49] |
S. Chen, F. Dai, M.L. Gordin, et al., Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium–sulfur batteries, Angew. Chem. Int. Ed. 55 (2016) 4231-4235. doi: 10.1002/anie.201511830
|
[50] |
Q.Q. Fan, B.H. Li, Y.B. Si, Y.Z. Fu, Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li–S batteries, Chem. Commun. 55 (2019) 7655-7658. doi: 10.1039/C8CC09565E
|
[51] |
W. Guo, A. Bhargav, J. Ackerson, et al., Mixture is better: Enhanced electrochemical performance of phenyl selenosulfide in rechargeable lithium batteries, Chem. Commun. 54 (2018) 8873-8876. doi: 10.1039/C8CC04076A
|
[52] |
F.Y. Fan, Y.M. Chiang, Electrodeposition kinetics in Li–S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition, J. Electrochem. Soc. 164 (2017) A917-A922. doi: 10.1149/2.0051706jes
|
[53] |
Y. Cui, J.D. Ackerson, Y. Ma, et al., Phenyl selenosulfides as cathode materials for rechargeable lithium batteries, Adv. Funct. Mater. 28 (2018) 1801791. doi: 10.1002/adfm.201801791
|
[54] |
M. Wu, Y. Cui, A. Bhargav, et al., Organotrisulfide: a high capacity cathode material for rechargeable lithium batteries, Angew. Chem. Int. Ed. 55 (2016) 10027-10031. doi: 10.1002/anie.201603897
|
[55] |
F.Y. Fan, W.C. Carter, Y. -M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries, Adv. Mater. 27 (2015) 5203-5209. doi: 10.1002/adma.201501559
|
[56] |
H.J. Peng, Z.W. Zhang, J.Q. Huang, et al., A cooperative interface for highly efficient lithium–sulfur batteries, Adv. Mater. 28 (2016) 9551-9558. doi: 10.1002/adma.201603401
|
[57] |
J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries, Energy Environ. Sci. 11 (2018) 2560-2568. doi: 10.1039/C8EE00893K
|
[58] |
J. He, A. Bhargav, A. Manthiram, Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium–sulfur batteries, Adv. Mater. 32 (2020) 2004741. doi: 10.1002/adma.202004741
|
[59] |
L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, In-situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries, ACS Energy Lett. 5 (2020) 1177-1185. doi: 10.1021/acsenergylett.0c00292
|
[60] |
Z. Shi, J. Wei, H. Xu, et al., A faster lithium ion diffusion pathway constructed by uniform distribution of sulfur using simple one step spray drying method, Chem. Eng. J. 379 (2020) 122353. doi: 10.1016/j.cej.2019.122353
|
[61] |
L. Wang, S. Liu, J. Hu, et al., Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li–S pouch cells, Nano Res. 14 (2021) 1355-1363. doi: 10.1007/s12274-020-3181-2
|
[62] |
X. Wang, Y. Yang, C. Lai, et al., Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries, Angew. Chem. Int. Ed. 60 (2021) 11359-11369. doi: 10.1002/anie.202016240
|
[63] |
C. Weller, S. Thieme, P. Hartel, H. Althues, S. Kaskel, Intrinsic shuttle suppression in lithium–sulfur batteries for pouch cell application, J. Electrochem. Soc. 164 (2017) A3766-A3771. doi: 10.1149/2.0981714jes
|
[64] |
F. Wu, F. Chu, G.A. Ferrero, et al., Boosting high-performance in lithium–sulfur batteries via dilute electrolyte, Nano Lett. 20 (2020) 5391-5399. doi: 10.1021/acs.nanolett.0c01778
|
[65] |
Y. Xie, G.Y. Pan, Q. Jin, et al., Semi-flooded sulfur cathode with ultralean absorbed electrolyte in Li–S battery, Adv. Sci. 7 (2020) 1903168. doi: 10.1002/advs.201903168
|
[66] |
G. Xu, D. Yu, D. Zheng, et al., Fast heat transport inside lithium-sulfur batteries promotes their safety and electrochemical performance, iScience 23 (2020) 101576. doi: 10.1016/j.isci.2020.101576
|
[67] |
W.J. Xue, Z. Shi, L.M. Suo, et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities, Nat. Energy. 4 (2019) 374-382. doi: 10.1038/s41560-019-0351-0
|
[68] |
G. Zhang, H.J. Peng, C.Z. Zhao, et al., The Radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium–sulfur batteries, Angew. Chem. Int. Ed. 57 (2018) 16732-16736. doi: 10.1002/anie.201810132
|
[69] |
C. Zhao, G.L. Xu, T.S. Zhao, K. Amine, Beyond polysulfides shuttle and Li dendrite formation: addressing the sluggish S redox kinetics for practical high energy Li–S batteries, Angew. Chem. Int. Ed. 59 (2020) 17634-17640. doi: 10.1002/anie.202007159
|
[70] |
M. Zhao, X. Chen, X.Y. Li, B.Q. Li, J.Q. Huang, An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries, Adv. Mater. 33 (2021) 2007298. doi: 10.1002/adma.202007298
|
[71] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford CT, 2016. https://gaussian.com/g09citation/.
|
[72] |
A.D. Becke, Density-functional thermochemistry. Ⅲ. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652. doi: 10.1063/1.464913
|
[73] |
A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B. 113 (2009) 6378-6396. doi: 10.1021/jp810292n
|
[74] |
M. Zhao, B.Q. Li, X. Chen, et al., Redox comediation with organopolysulfides in working lithium–sulfur batteries, Chem 6 (2020) 3297-3311. doi: 10.1016/j.chempr.2020.09.015
|