Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Zhao Meng, Li Xi-Yao, Chen Xiang, Li Bo-Quan, Kaskel Stefan, Zhang Qiang, Huang Jia-Qi. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries[J]. eScience, 2021, 1(1): 44-52. doi: 10.1016/j.esci.2021.08.001
Citation: Zhao Meng, Li Xi-Yao, Chen Xiang, Li Bo-Quan, Kaskel Stefan, Zhang Qiang, Huang Jia-Qi. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries[J]. eScience, 2021, 1(1): 44-52. doi: 10.1016/j.esci.2021.08.001

Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries

doi: 10.1016/j.esci.2021.08.001
More Information
  • Lithium–sulfur (Li–S) batteries are considered as a highly promising energy storage system due to their ultrahigh theoretical energy density. However, the sluggish kinetics of the complex multi-electron sulfur redox reactions seriously hinders the actual battery performance especially under practical working conditions. Homogeneous redox mediation, through elaborately designing the additive molecules, is an effective approach to promote the sulfur redox kinetics. Herein a promoter of mixed organodiselenides (mixed-Se) is proposed to comprehensively improve the sulfur redox kinetics following the redox comediation principles. Concretely, diphenyl diselenide promotes the liquid–liquid conversion between polysulfides and the solid–liquid conversion regarding lithium sulfide oxidation to polysulfides, while dimethyl diselenide enhances the liquid–solid conversion regarding lithium sulfide deposition. Consequently, the mixed-Se promoter endows a high discharge capacity of 1002 mAh g−1 with high sulfur loading of 4.0 mg cm−2, a high capacity retention of 81.6% after 200 cycles at 0.5 C, and a high actual energy density of 384 Wh kg−1 at 0.025 C in 1.5 Ah-level Li–S pouch cells. This work affords an effective kinetic promoter to construct high-energy-density Li–S batteries and inspires molecular design of kinetic promoters toward targeted energy-related redox reactions.
  • 1 These authors contribute equally to this work.
  • loading
  • eScience-2021-1-44-s2.0-S266714172100001X-mmc1.docx
  • [1]
    Q. Li, H.S. Li, Q.T. Xia, et al., Extra storage capacity in transition metal oxide lithium–ion batteries revealed by in situ magnetometry, Nat. Mater. 20 (2021) 76-83. doi: 10.1038/s41563-020-0756-y
    [2]
    Y. Wang, D. Zhou, V. Palomares, et al., Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review, Energy Environ. Sci. 13 (2020) 3848-3879. doi: 10.1039/D0EE02203A
    [3]
    G.M. Zhou, A.K. Yang, G.P. Gao, et al., Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li–S batteries, Sci. Adv. 6 (2020) eaay5098. doi: 10.1126/sciadv.aay5098
    [4]
    P.D. Frischmann, Y. Hwa, E.J. Cairns, B.A. Helms, Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando, Chem. Mater. 28 (2016) 7414-7421. doi: 10.1021/acs.chemmater.6b03013
    [5]
    H. Ye, J.Y. Lee, Solid additives for improving the performance of sulfur cathodes in lithium–sulfur batteries—adsorbents, mediators, and catalysts, Small Methods 4 (2020) 1900864. doi: 10.1002/smtd.201900864
    [6]
    C. Zhao, G.L. Xu, Z. Yu, et al., A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites, Nat. Nanotechnol. 16 (2020) 166-173.
    [7]
    W.J. Xue, D.W. Yu, L.M. Suo, et al., Manipulating sulfur mobility enables advanced Li–S batteries, Matter 1 (2019) 1047-1060. doi: 10.1016/j.matt.2019.07.002
    [8]
    X.D. Hong, R. Wang, Y. Liu, J.W. Fu, J. Liang, S.X. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries, J. Energy Chem. 42 (2020) 144-168. doi: 10.1016/j.jechem.2019.07.001
    [9]
    G. Babu, N. Masurkar, H. Al Salem, L.M. Arava, Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis, J. Am. Chem. Soc. 139 (2017) 171-178. doi: 10.1021/jacs.6b08681
    [10]
    W. Liu, C. Luo, S. Zhang, et al., Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries, ACS Nano 15 (2021) 7491-7499. doi: 10.1021/acsnano.1c00896
    [11]
    X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries, Adv. Mater. 29 (2017) 1601759. doi: 10.1002/adma.201601759
    [12]
    Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries, Nat. Commun. 5 (2014) 5682-5690.
    [13]
    M. Zhao, H.J. Peng, B.Q. Li, et al., Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion, Angew. Chem. Int. Ed. 59 (2020) 9011-9017. doi: 10.1002/anie.202003136
    [14]
    Y.R. Zhong, L.C. Yin, P. He, et al., Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries, J. Am. Chem. Soc. 140 (2018) 1455-1459. doi: 10.1021/jacs.7b11434
    [15]
    H. Al Salem, G. Babu, C.V. Rao, L.M. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries, J. Am. Chem. Soc. 137 (2015) 11542-11545. doi: 10.1021/jacs.5b04472
    [16]
    M.D. Zhang, C. Yu, C.T. Zhao, et al., Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery, Energy Storage Mater. 5 (2016) 223-229. doi: 10.1016/j.ensm.2016.04.002
    [17]
    B.Q. Li, H.J. Peng, X. Chen, et al., Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium–sulfur batteries, CCS Chem. 1 (2019) 128-137.
    [18]
    L.L. Peng, Z. Wei, C. Wan, et al., A fundamental look at electrocatalytic sulfur reduction reaction, Nat. Catal. 3 (2020) 762-770. doi: 10.1038/s41929-020-0498-x
    [19]
    H. Tang, L. You, J.W. Liu, et al., Integrated polypyrrole@sulfur@graphene aerogel 3D architecture via advanced vapor polymerization for high-performance lithium–sulfur batteries, ACS Appl. Mater. Interfaces 11 (2019) 18448-18455. doi: 10.1021/acsami.9b04167
    [20]
    J. Zhang, J.Y. Li, W.P. Wang, et al., Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries, Adv. Energy Mater. 8 (2018) 1702839. doi: 10.1002/aenm.201702839
    [21]
    Y. Zhang, G. Li, J. Wang, et al., "Sauna" activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium–sulfur batteries, Adv. Energy Mater. 11 (2021) 2100497. doi: 10.1002/aenm.202100497
    [22]
    Z. Du, X. Chen, W. Hu, et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries, J. Am. Chem. Soc. 141 (2019) 3977-3985. doi: 10.1021/jacs.8b12973
    [23]
    B.Q. Li, L. Kong, C.X. Zhao, et al., Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries, InfoMat 1 (2019) 533-541. doi: 10.1002/inf2.12056
    [24]
    F.F. Wang, J. Li, J. Zhao, et al., Single-atom electrocatalysts for lithium sulfur batteries: progress, opportunities, and challenges, ACS Mater. Lett. 2 (2020) 1450-1463. doi: 10.1021/acsmaterialslett.0c00396
    [25]
    J. Xie, B.Q. Li, H.J. Peng, et al., Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries, Adv. Mater. 31 (2019) 1903813. doi: 10.1002/adma.201903813
    [26]
    G.M. Zhou, S.Y. Zhao, T.S. Wang, et al., Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries, Nano Lett. 20 (2020) 1252-1261. doi: 10.1021/acs.nanolett.9b04719
    [27]
    Z.C. Zhuang, Q. Kang, D.S. Wang, Y.D. Li, Single-atom catalysis enables long-life, high-energy lithium–sulfur batteries, Nano Res. 13 (2020) 1856-1866. doi: 10.1007/s12274-020-2827-4
    [28]
    S. Hussain, X.Y. Yang, M.K. Aslam, et al., Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations, Chem. Eng. J. 391 (2020) 123595. doi: 10.1016/j.cej.2019.123595
    [29]
    S.Y. Li, W.P. Wang, H. Duan, Y.G. Guo, Recent progress on confinement of polysulfides through physical and chemical methods, J. Energy Chem. 27 (2018) 1555-1565. doi: 10.1016/j.jechem.2018.04.014
    [30]
    H.Q. Wang, W.C. Zhang, J.Z. Xu, Z.P. Guo, Advances in polar materials for lithium–sulfur batteries, Adv. Funct. Mater. 28 (2018) 1707520. doi: 10.1002/adfm.201707520
    [31]
    L.N. Wang, Y.X. Lin, S. DeCarlo, et al., Compositions and formation mechanisms of solid-electrolyte interphase on microporous carbon/sulfur cathodes, Chem. Mater. 32 (2020) 3765-3775. doi: 10.1021/acs.chemmater.9b05027
    [32]
    J.S. Yeon, Y.H. Ko, T.H. Park, et al., Multidimensional hybrid architecture encapsulating cobalt oxide nanoparticles into carbon nanotube branched nitrogen-doped reduced graphene oxide networks for lithium–sulfur batteries, Energy Environ. Mater. (2021), doi: 10.1002/eem2.12187.
    [33]
    T.H. Zhou, W. Lv, J. Li, et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci. 10 (2017) 1694-1703. doi: 10.1039/C7EE01430A
    [34]
    Y. Zhu, G. Li, D. Luo, et al., Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium–sulfur batteries, Nano Energy 79 (2021) 105393. doi: 10.1016/j.nanoen.2020.105393
    [35]
    H. Yuan, H.J. Peng, B.Q. Li, et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries, Adv. Energy Mater. 9 (2019) 1802768. doi: 10.1002/aenm.201802768
    [36]
    Z.W. Zhang, H.J. Peng, M. Zhao, J.Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects, Adv. Funct. Mater. 28 (2018) 1707536. doi: 10.1002/adfm.201707536
    [37]
    J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium–sulfur batteries, Energy Storage Mater. 20 (2019) 55-70. doi: 10.1016/j.ensm.2019.04.038
    [38]
    M. Li, Z.Y. Bai, Y.J. Li, et al., Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte, Nat. Commun. 10 (2019) 1890. doi: 10.1038/s41467-019-09638-4
    [39]
    X. Wu, N.N. Liu, B. Guan, et al., Redox mediator: a new strategy in designing cathode for prompting redox process of Li–S batteries, Adv. Sci. 6 (2019) 1900958. doi: 10.1002/advs.201900958
    [40]
    M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries, ACS Cent. Sci. 6 (2020) 1095-1104. doi: 10.1021/acscentsci.0c00449
    [41]
    Y. Tsao, M. Lee, E.C. Miller, et al., Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries, Joule 3 (2019) 872-884. doi: 10.1016/j.joule.2018.12.018
    [42]
    K.R. Kim, K.S. Lee, C.Y. Ahn, S.H. Yu, Y.E. Sung, Discharging a Li–S battery with ultra-high sulphur content cathode using a redox mediator, Sci. Rep. 6 (2016) 32433. doi: 10.1038/srep32433
    [43]
    M. Zhao, H.J. Peng, J.Y. Wei, et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfde growth, Small Methods 4 (2020) 1900344. doi: 10.1002/smtd.201900344
    [44]
    C.X. Zhao, W.J. Chen, M. Zhao, et al., Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes, EcoMat 3 (2020) e12066.
    [45]
    J.F. Li, L.Q. Yang, S.L. Yang, J.Y. Lee, The application of redox targeting principles to the design of rechargeable Li–S flow batteries, Adv. Energy Mater. 5 (2015) 1501808. doi: 10.1002/aenm.201501808
    [46]
    A.G. Tamirat, X. Guan, J. Liu, J. Luo, Y.Y. Xia, Redox mediators as charge agents for changing electrochemical reactions, Chem. Soc. Rev. 49 (2020) 7454-7478. doi: 10.1039/D0CS00489H
    [47]
    W. Xue, D. Yu, L. Suo, et al., Manipulating sulfur mobility enables advanced Li-S batteries, Matter 1 (2019) 1047-1060. doi: 10.1016/j.matt.2019.07.002
    [48]
    S.R. Chen, D.W. Wang, Y.M. Zhao, D.H. Wang, Superior performance of a lithium-sulfur battery enabled by a dimethyl trisulfide containing electrolyte, Small Methods 2 (2018) 1800038.
    [49]
    S. Chen, F. Dai, M.L. Gordin, et al., Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium–sulfur batteries, Angew. Chem. Int. Ed. 55 (2016) 4231-4235. doi: 10.1002/anie.201511830
    [50]
    Q.Q. Fan, B.H. Li, Y.B. Si, Y.Z. Fu, Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li–S batteries, Chem. Commun. 55 (2019) 7655-7658. doi: 10.1039/C8CC09565E
    [51]
    W. Guo, A. Bhargav, J. Ackerson, et al., Mixture is better: Enhanced electrochemical performance of phenyl selenosulfide in rechargeable lithium batteries, Chem. Commun. 54 (2018) 8873-8876. doi: 10.1039/C8CC04076A
    [52]
    F.Y. Fan, Y.M. Chiang, Electrodeposition kinetics in Li–S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition, J. Electrochem. Soc. 164 (2017) A917-A922. doi: 10.1149/2.0051706jes
    [53]
    Y. Cui, J.D. Ackerson, Y. Ma, et al., Phenyl selenosulfides as cathode materials for rechargeable lithium batteries, Adv. Funct. Mater. 28 (2018) 1801791. doi: 10.1002/adfm.201801791
    [54]
    M. Wu, Y. Cui, A. Bhargav, et al., Organotrisulfide: a high capacity cathode material for rechargeable lithium batteries, Angew. Chem. Int. Ed. 55 (2016) 10027-10031. doi: 10.1002/anie.201603897
    [55]
    F.Y. Fan, W.C. Carter, Y. -M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries, Adv. Mater. 27 (2015) 5203-5209. doi: 10.1002/adma.201501559
    [56]
    H.J. Peng, Z.W. Zhang, J.Q. Huang, et al., A cooperative interface for highly efficient lithium–sulfur batteries, Adv. Mater. 28 (2016) 9551-9558. doi: 10.1002/adma.201603401
    [57]
    J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries, Energy Environ. Sci. 11 (2018) 2560-2568. doi: 10.1039/C8EE00893K
    [58]
    J. He, A. Bhargav, A. Manthiram, Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium–sulfur batteries, Adv. Mater. 32 (2020) 2004741. doi: 10.1002/adma.202004741
    [59]
    L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, In-situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries, ACS Energy Lett. 5 (2020) 1177-1185. doi: 10.1021/acsenergylett.0c00292
    [60]
    Z. Shi, J. Wei, H. Xu, et al., A faster lithium ion diffusion pathway constructed by uniform distribution of sulfur using simple one step spray drying method, Chem. Eng. J. 379 (2020) 122353. doi: 10.1016/j.cej.2019.122353
    [61]
    L. Wang, S. Liu, J. Hu, et al., Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li–S pouch cells, Nano Res. 14 (2021) 1355-1363. doi: 10.1007/s12274-020-3181-2
    [62]
    X. Wang, Y. Yang, C. Lai, et al., Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries, Angew. Chem. Int. Ed. 60 (2021) 11359-11369. doi: 10.1002/anie.202016240
    [63]
    C. Weller, S. Thieme, P. Hartel, H. Althues, S. Kaskel, Intrinsic shuttle suppression in lithium–sulfur batteries for pouch cell application, J. Electrochem. Soc. 164 (2017) A3766-A3771. doi: 10.1149/2.0981714jes
    [64]
    F. Wu, F. Chu, G.A. Ferrero, et al., Boosting high-performance in lithium–sulfur batteries via dilute electrolyte, Nano Lett. 20 (2020) 5391-5399. doi: 10.1021/acs.nanolett.0c01778
    [65]
    Y. Xie, G.Y. Pan, Q. Jin, et al., Semi-flooded sulfur cathode with ultralean absorbed electrolyte in Li–S battery, Adv. Sci. 7 (2020) 1903168. doi: 10.1002/advs.201903168
    [66]
    G. Xu, D. Yu, D. Zheng, et al., Fast heat transport inside lithium-sulfur batteries promotes their safety and electrochemical performance, iScience 23 (2020) 101576. doi: 10.1016/j.isci.2020.101576
    [67]
    W.J. Xue, Z. Shi, L.M. Suo, et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities, Nat. Energy. 4 (2019) 374-382. doi: 10.1038/s41560-019-0351-0
    [68]
    G. Zhang, H.J. Peng, C.Z. Zhao, et al., The Radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium–sulfur batteries, Angew. Chem. Int. Ed. 57 (2018) 16732-16736. doi: 10.1002/anie.201810132
    [69]
    C. Zhao, G.L. Xu, T.S. Zhao, K. Amine, Beyond polysulfides shuttle and Li dendrite formation: addressing the sluggish S redox kinetics for practical high energy Li–S batteries, Angew. Chem. Int. Ed. 59 (2020) 17634-17640. doi: 10.1002/anie.202007159
    [70]
    M. Zhao, X. Chen, X.Y. Li, B.Q. Li, J.Q. Huang, An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries, Adv. Mater. 33 (2021) 2007298. doi: 10.1002/adma.202007298
    [71]
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford CT, 2016. https://gaussian.com/g09citation/.
    [72]
    A.D. Becke, Density-functional thermochemistry. Ⅲ. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652. doi: 10.1063/1.464913
    [73]
    A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B. 113 (2009) 6378-6396. doi: 10.1021/jp810292n
    [74]
    M. Zhao, B.Q. Li, X. Chen, et al., Redox comediation with organopolysulfides in working lithium–sulfur batteries, Chem 6 (2020) 3297-3311. doi: 10.1016/j.chempr.2020.09.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (561) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return