Citation: | Wang Tongzhou, Cao Xuejie, Jiao Lifang. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production[J]. eScience, 2021, 1(1): 69-74. doi: 10.1016/j.esci.2021.09.002 |
![]() |
![]() |
[1] |
L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev. 49 (2020) 3072-3106 doi: 10.1039/D0CS00013B
|
[2] |
W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami, P. Strasser, A.J. Cowan, P. Farràs, Electrolysis of low-grade and saline surface water, Nat. Energy 5 (2020) 367-377 doi: 10.1038/s41560-020-0550-8
|
[3] |
Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao, S.H. Yu, Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects, Adv. Mater. 33 (2021) 2007100 doi: 10.1002/adma.202007100
|
[4] |
F. Lin, Z. Dong, Y. Yao, L. Yang, F. Fang, L. Jiao, Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution, Adv. Energy Mater. 10 (2020) 2002176 doi: 10.1002/aenm.202002176
|
[5] |
L. Yang, R. Liu, L. Jiao, Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting, Adv. Funct. Mater. 30 (2020) 1909618 doi: 10.1002/adfm.201909618
|
[6] |
L. Yang, H. Qin, Z. Dong, et al, Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis, Small 17 (2021) 2102027 doi: 10.1002/smll.202102027
|
[7] |
T. Wang, X. Cao, L. Jiao, MOFs-derived carbon-based metal catalysts for energy-related electrocatalysis, Small 17 (2021) 2004398 doi: 10.1002/smll.202004398
|
[8] |
J. Yin, J. Jin, H. Lin, Z. Yin, J. Li, M. Lu, L. Guo, P. Xi, Y. Tang, C. -H. Yan, Optimized metal chalcogenides for boosting water splitting, Adv. Sci. 7 (2020) 1903070 doi: 10.1002/advs.201903070
|
[9] |
Q. Fu, J. Han, X. Wang, P. Xu, T. Yao, J. Zhong, W. Zhong, S. Liu, T. Gao, Z. Zhang, L. Xu, B. Song, 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis, Adv. Mater. 33 (2021) 1907818 doi: 10.1002/adma.201907818
|
[10] |
H. Zhang, A. Maijenburg, X. Li, et al, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting, Adv. Funct. Mater. 30 (2020) 2003261 doi: 10.1002/adfm.202003261
|
[11] |
Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis, Adv. Energy Mater. 10 (2019) 1902104
|
[12] |
H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater. 32 (2019) 1806326
|
[13] |
H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li, A. Slattery, S.Z. Qiao, Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride, Adv. Mater. 33 (2021) 2007508 doi: 10.1002/adma.202007508
|
[14] |
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications, Adv. Mater. 29 (2017) 1605838 doi: 10.1002/adma.201605838
|
[15] |
Z. Chen, W. Gong, S. Cong, Z. Wang, G. Song, T. Pan, X. Tang, J. Chen, W. Lu, Z. Zhao, Eutectoid-structured WC/W2C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials, Nano Energy 68 (2019) 104335 http://www.sciencedirect.com/science/article/pii/S2211285519310420
|
[16] |
K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J.L. Luo, X.Z. Fu, Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts, Adv. Funct. Mater. 30 (2020) 1909610 doi: 10.1002/adfm.201909610
|
[17] |
M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu, B. Zhao, H. Yang, J. -L. Luo, X.Z. Fu, CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption, J. Energy Chem. 50 (2020) 314-323 doi: 10.1016/j.jechem.2020.03.050
|
[18] |
T. Wang, Q. Wang, Y. Wang, Y. Da, W. Zhou, Y. Shao, D. Li, S. Zhan, J. Yuan, H. Wang, Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells, Angew. Chem. Int. Ed. 58 (2019) 13466-13471 doi: 10.1002/anie.201907752
|
[19] |
Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production, Nat. Commun. 11 (2020) 1853 doi: 10.1038/s41467-020-15563-8
|
[20] |
C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen, X. Wang, Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis, Adv. Funct. Mater. 30 (2020) 2000556 doi: 10.1002/adfm.202000556
|
[21] |
B. Zhu, Z. Liang, R. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction, Small 16 (2020) 1906133 doi: 10.1002/smll.201906133
|
[22] |
Y. Lu, T. Liu, C.L. Dong, Y.C. Huang, Y. Li, J. Chen, Y. Zou, S. Wang, Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis, Adv. Mater. 33 (2021) 2007056 doi: 10.1002/adma.202007056
|
[23] |
M. Zhang, Y. Liu, B. Liu, et al, Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural, ACS Catal. 10 (2020) 5179-5189 doi: 10.1021/acscatal.0c00007
|
[24] |
B. Zhang, L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, Regulating the local charge distribution of Ni active sites for urea oxidation reaction, Angew. Chem. Int. Ed. 133 (2021) 10671-10676 doi: 10.1002/ange.202100610
|
[25] |
X. Huang, X. Xu, X. Luan, D.J. Cheng, CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction, Nano Energy 68 (2020) 104332 doi: 10.1016/j.nanoen.2019.104332
|
[26] |
H. Fu, Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian, Two dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction, Angew. Chem. Int. Ed. 60 (2021) 6673-6681 doi: 10.1002/anie.202016102
|
[27] |
X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J. Yu, Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting, Nat. Commun. 12 (2021) 1380 doi: 10.1038/s41467-021-21742-y
|
[28] |
X. Li, Y. Wang, J. Wang, et al, Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution, Adv. Mater. 32 (2020) 2003414 doi: 10.1002/adma.202003414
|
[29] |
G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation, Adv. Mater. 32 (2020) 2000455 doi: 10.1002/adma.202000455
|
[30] |
J. Zhu, Y. Guo, F. Liu, H. Xu, L. Gong, W. Shi, D. Chen, P. Wang, Y. Yang, C. Zhang, J. Wu, J. Luo, S. Mu, Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media, Angew. Chem. Int. Ed. 60 (2021) 12328-12334 doi: 10.1002/anie.202101539
|
[31] |
J. Wang, M. Zhang, G. Yang, W. Song, W. Zhong, X. Wang, M. Wang, T. Sun, Y. Tang, Heterogeneous bimetallic Mo-NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting, Adv. Funct. Mater. 31 (2021) 2101532 doi: 10.1002/adfm.202101532
|
[32] |
F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. GoddardIII, S. Chen, Z. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting, Nat. Commun. 9 (2018) 2551 doi: 10.1038/s41467-018-04746-z
|
[33] |
S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W.D. Lou, Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors, Adv. Energy Mater. 5 (2015) 1401172 doi: 10.1002/aenm.201401172
|
[34] |
C. Wang, L. Qi, Heterostructured inter‐doped ruthenium‐cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting, Angew. Chem. Int. Ed. 59 (2020) 17219-17224 doi: 10.1002/anie.202005436
|
[35] |
L. Yu, I.K. Mishra, Y. Xie, H. Zhou, J. Sun, J. Zhou, Y. Ni, D. Luo, F. Yu, Y. Yu, S. Chen, Z. Ren, Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density, Nano Energy 53 (2018) 492-500 doi: 10.1016/j.nanoen.2018.08.025
|
[36] |
N. Zhang, X. Feng, D. Rao, et al, Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation, Nat. Commun. 11 (2020) 4066 doi: 10.1038/s41467-020-17934-7
|
[37] |
X. Gao, X. Liu, W. Zang, et al, Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction, Nano Energy 78 (2020) 105355 doi: 10.1016/j.nanoen.2020.105355
|
[38] |
T. Zhao, X. Shen, Y. Wang, R.K. Hocking, Y. Li, C. Rong, K. Dastafkan, Z. Su, C. Zhao, In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation, Adv. Funct. Mater. 31 (2021) 2100614 doi: 10.1002/adfm.202100614
|