Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Wang Tongzhou, Cao Xuejie, Jiao Lifang. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production[J]. eScience, 2021, 1(1): 69-74. doi: 10.1016/j.esci.2021.09.002
Citation: Wang Tongzhou, Cao Xuejie, Jiao Lifang. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production[J]. eScience, 2021, 1(1): 69-74. doi: 10.1016/j.esci.2021.09.002

Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production

doi: 10.1016/j.esci.2021.09.002
More Information
  • Corresponding author: E-mail address: jiaolf@nankai.edu.cn (L. Jiao)
  • Received Date: 2021-06-29
  • Revised Date: 2021-08-14
  • Accepted Date: 2021-09-17
  • Available Online: 2021-09-21
  • Electrochemical water splitting is a sustainable and feasible strategy for hydrogen production but is hampered by the sluggish anodic oxygen evolution reaction (OER). Herein, an effective approach is introduced to significantly decrease the cell voltage by replacing the anodic OER with a urea oxidation reaction (UOR). A Ni2P/NiMoP nanosheet catalyst with a hierarchical architecture is uniformly grown on a nickel foam (NF) substrate through a simple hydrothermal and phosphorization method. The Ni2P/NiMoP achieves impressive HER activity, with a low overpotential of only 22 mV at 10 mA cm-2 and a low Tafel slope of 34.5 mV dec-1. In addition, the oxidation voltage is significantly reduced from 1.49 V to 1.33 V after the introduction of 0.33 M urea. Notably, a two-electrode electrolyzer employing Ni2P/NiMoP as a bifunctional catalyst exhibits a current density of 10 mA cm-2 at a cell voltage of 1.35 V and excellent long-term durability after 80 h.
  • loading
  • eScience-2021-1-69-1-s2.0-S2667141721000045-mmc1.docx
  • [1]
    L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev. 49 (2020) 3072-3106 doi: 10.1039/D0CS00013B
    [2]
    W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami, P. Strasser, A.J. Cowan, P. Farràs, Electrolysis of low-grade and saline surface water, Nat. Energy 5 (2020) 367-377 doi: 10.1038/s41560-020-0550-8
    [3]
    Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao, S.H. Yu, Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects, Adv. Mater. 33 (2021) 2007100 doi: 10.1002/adma.202007100
    [4]
    F. Lin, Z. Dong, Y. Yao, L. Yang, F. Fang, L. Jiao, Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution, Adv. Energy Mater. 10 (2020) 2002176 doi: 10.1002/aenm.202002176
    [5]
    L. Yang, R. Liu, L. Jiao, Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting, Adv. Funct. Mater. 30 (2020) 1909618 doi: 10.1002/adfm.201909618
    [6]
    L. Yang, H. Qin, Z. Dong, et al, Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis, Small 17 (2021) 2102027 doi: 10.1002/smll.202102027
    [7]
    T. Wang, X. Cao, L. Jiao, MOFs-derived carbon-based metal catalysts for energy-related electrocatalysis, Small 17 (2021) 2004398 doi: 10.1002/smll.202004398
    [8]
    J. Yin, J. Jin, H. Lin, Z. Yin, J. Li, M. Lu, L. Guo, P. Xi, Y. Tang, C. -H. Yan, Optimized metal chalcogenides for boosting water splitting, Adv. Sci. 7 (2020) 1903070 doi: 10.1002/advs.201903070
    [9]
    Q. Fu, J. Han, X. Wang, P. Xu, T. Yao, J. Zhong, W. Zhong, S. Liu, T. Gao, Z. Zhang, L. Xu, B. Song, 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis, Adv. Mater. 33 (2021) 1907818 doi: 10.1002/adma.201907818
    [10]
    H. Zhang, A. Maijenburg, X. Li, et al, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting, Adv. Funct. Mater. 30 (2020) 2003261 doi: 10.1002/adfm.202003261
    [11]
    Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis, Adv. Energy Mater. 10 (2019) 1902104
    [12]
    H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater. 32 (2019) 1806326
    [13]
    H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li, A. Slattery, S.Z. Qiao, Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride, Adv. Mater. 33 (2021) 2007508 doi: 10.1002/adma.202007508
    [14]
    J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications, Adv. Mater. 29 (2017) 1605838 doi: 10.1002/adma.201605838
    [15]
    Z. Chen, W. Gong, S. Cong, Z. Wang, G. Song, T. Pan, X. Tang, J. Chen, W. Lu, Z. Zhao, Eutectoid-structured WC/W2C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials, Nano Energy 68 (2019) 104335 http://www.sciencedirect.com/science/article/pii/S2211285519310420
    [16]
    K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J.L. Luo, X.Z. Fu, Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts, Adv. Funct. Mater. 30 (2020) 1909610 doi: 10.1002/adfm.201909610
    [17]
    M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu, B. Zhao, H. Yang, J. -L. Luo, X.Z. Fu, CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption, J. Energy Chem. 50 (2020) 314-323 doi: 10.1016/j.jechem.2020.03.050
    [18]
    T. Wang, Q. Wang, Y. Wang, Y. Da, W. Zhou, Y. Shao, D. Li, S. Zhan, J. Yuan, H. Wang, Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells, Angew. Chem. Int. Ed. 58 (2019) 13466-13471 doi: 10.1002/anie.201907752
    [19]
    Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production, Nat. Commun. 11 (2020) 1853 doi: 10.1038/s41467-020-15563-8
    [20]
    C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen, X. Wang, Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis, Adv. Funct. Mater. 30 (2020) 2000556 doi: 10.1002/adfm.202000556
    [21]
    B. Zhu, Z. Liang, R. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction, Small 16 (2020) 1906133 doi: 10.1002/smll.201906133
    [22]
    Y. Lu, T. Liu, C.L. Dong, Y.C. Huang, Y. Li, J. Chen, Y. Zou, S. Wang, Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis, Adv. Mater. 33 (2021) 2007056 doi: 10.1002/adma.202007056
    [23]
    M. Zhang, Y. Liu, B. Liu, et al, Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural, ACS Catal. 10 (2020) 5179-5189 doi: 10.1021/acscatal.0c00007
    [24]
    B. Zhang, L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, Regulating the local charge distribution of Ni active sites for urea oxidation reaction, Angew. Chem. Int. Ed. 133 (2021) 10671-10676 doi: 10.1002/ange.202100610
    [25]
    X. Huang, X. Xu, X. Luan, D.J. Cheng, CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction, Nano Energy 68 (2020) 104332 doi: 10.1016/j.nanoen.2019.104332
    [26]
    H. Fu, Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian, Two dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction, Angew. Chem. Int. Ed. 60 (2021) 6673-6681 doi: 10.1002/anie.202016102
    [27]
    X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J. Yu, Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting, Nat. Commun. 12 (2021) 1380 doi: 10.1038/s41467-021-21742-y
    [28]
    X. Li, Y. Wang, J. Wang, et al, Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution, Adv. Mater. 32 (2020) 2003414 doi: 10.1002/adma.202003414
    [29]
    G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation, Adv. Mater. 32 (2020) 2000455 doi: 10.1002/adma.202000455
    [30]
    J. Zhu, Y. Guo, F. Liu, H. Xu, L. Gong, W. Shi, D. Chen, P. Wang, Y. Yang, C. Zhang, J. Wu, J. Luo, S. Mu, Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media, Angew. Chem. Int. Ed. 60 (2021) 12328-12334 doi: 10.1002/anie.202101539
    [31]
    J. Wang, M. Zhang, G. Yang, W. Song, W. Zhong, X. Wang, M. Wang, T. Sun, Y. Tang, Heterogeneous bimetallic Mo-NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting, Adv. Funct. Mater. 31 (2021) 2101532 doi: 10.1002/adfm.202101532
    [32]
    F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. GoddardIII, S. Chen, Z. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting, Nat. Commun. 9 (2018) 2551 doi: 10.1038/s41467-018-04746-z
    [33]
    S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W.D. Lou, Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors, Adv. Energy Mater. 5 (2015) 1401172 doi: 10.1002/aenm.201401172
    [34]
    C. Wang, L. Qi, Heterostructured inter‐doped ruthenium‐cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting, Angew. Chem. Int. Ed. 59 (2020) 17219-17224 doi: 10.1002/anie.202005436
    [35]
    L. Yu, I.K. Mishra, Y. Xie, H. Zhou, J. Sun, J. Zhou, Y. Ni, D. Luo, F. Yu, Y. Yu, S. Chen, Z. Ren, Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density, Nano Energy 53 (2018) 492-500 doi: 10.1016/j.nanoen.2018.08.025
    [36]
    N. Zhang, X. Feng, D. Rao, et al, Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation, Nat. Commun. 11 (2020) 4066 doi: 10.1038/s41467-020-17934-7
    [37]
    X. Gao, X. Liu, W. Zang, et al, Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction, Nano Energy 78 (2020) 105355 doi: 10.1016/j.nanoen.2020.105355
    [38]
    T. Zhao, X. Shen, Y. Wang, R.K. Hocking, Y. Li, C. Rong, K. Dastafkan, Z. Su, C. Zhao, In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation, Adv. Funct. Mater. 31 (2021) 2100614 doi: 10.1002/adfm.202100614
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (933) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return