Citation: | Yan Lei, Qi Ya-e, Dong Xiaoli, Wang Yonggang, Xia Yongyao. Ammonium-ion batteries with a wide operating temperature window from −40 to 80 ℃[J]. eScience, 2021, 1(2): 212-218. doi: 10.1016/j.esci.2021.12.002 |
![]() |
![]() |
[1] |
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (2011) 928–935. doi: 10.1126/science.1212741
|
[2] |
M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657. doi: 10.1038/451652a
|
[3] |
L.M. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X.L. Fan, C. Luo, C.S. Wang, K. Xu, "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science 350 (2015) 938–943. doi: 10.1126/science.aab1595
|
[4] |
D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li, M. Jaroniec, S.Z. Qiao, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv. 6 (2020), eaba4098. doi: 10.1126/sciadv.aba4098
|
[5] |
Z.X. Wei, W. Shin, H. Jiang, X.Y. Wu, W.F. Stickle, G. Chen, J. Lu, P.A. Greaney, F. Du, X.L. Ji, Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries, Nat. Commun. 10 (2019) 3227. doi: 10.1038/s41467-019-11218-5
|
[6] |
C.Y. Yang, J. Chen, X. Ji, T.P. Pollard, X.J. Lü, C.J. Sun, S. Hou, Q. Liu, C.M. Liu, T.T. Qing, Y.Q. Wang, O. Borodin, Y. Ren, K. Xu, C.S. Wang, Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite, Nature 569 (2019) 245–250. doi: 10.1038/s41586-019-1175-6
|
[7] |
L.W. Jiang, L.L. Liu, J.M. Yue, Q.Q. Zhang, A.X. Zhou, O. Borodin, L.M. Suo, H. Li, L.Q. Chen, K. Xu, Y. -S. Hu, High-Voltage aqueous Na-ion battery enabled by inertcation-assisted water-in-salt electrolyte, Adv. Mater. 32 (2020) 1904427. doi: 10.1002/adma.201904427
|
[8] |
L.W. Jiang, Y.X. Lu, C.L. Zhao, L.L. Liu, J.N. Zhang, Q.Q. Zhang, X. Shen, J.M. Zhao, X.Q. Yu, H. Li, X.J. Huang, L.Q. Chen, Y.S. Hu, Building aqueous K-ion batteries for energy storage, Nat. Energy 4 (2019) 495–503. doi: 10.1038/s41560-019-0388-0
|
[9] |
F. Wan, Y. Zhang, L.L. Zhang, D.B. Liu, C.D. Wang, L. Song, Z.Q. Niu, J. Chen, Reversible oxygen redox chemistry in aqueous zinc-ion batteries, Angew. Chem. Int. Ed. 58 (2019) 7062–7067. doi: 10.1002/anie.201902679
|
[10] |
Y. Zhang, F. Wan, S. Huang, S. Wang, Z.Q. Niu, J. Chen, A chemically self-charging aqueous zinc-ion battery, Nat. Commun. 11 (2020) 2199. doi: 10.1038/s41467-020-16039-5
|
[11] |
D.L. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries, Inside Chem. 5 (2019) 1357–1370. https://www.sciencedirect.com/science/article/pii/S245192941930230X
|
[12] |
X.Y. Wu, Y.K. Xu, H. Jiang, Z.X. Wei, J.J. Hong, A.S. Hernandez, F. Du, X.L. Ji, NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries, ACS Appl. Energy Mater. 1 (2018) 3077–3083. doi: 10.1021/acsaem.8b00789
|
[13] |
C.D. Wessells, S.V. Peddada, M.T. McDowell, R.A. Huggins, Y. Cui, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc. 159 (2012) A98–A103. doi: 10.1149/2.060202jes
|
[14] |
R. Vittal, K.J. Kim, H. Gomathi, V. Yegnaraman, CTAB-promoted Prussian bluemodified electrode and its cation transport characteristics for K+, Na+, Li+, and NH4+ ions, J. Phys. Chem. B 112 (2008) 1149–1156. doi: 10.1021/jp074994s
|
[15] |
Y. Song, Q. Pan, H.Z. Lv, D. Yang, Z.M. Qin, M.Y. Zhang, X.Q. Sun, X.X. Liu, Ammonium-ion storage in electrodeposited manganese oxides, Angew. Chem. Int. Ed. 60 (2021) 5718–5722. doi: 10.1002/anie.202013110
|
[16] |
Q. Zhao, L.J. Liu, J.F. Yin, J.X. Zheng, D.H. Zhang, J. Chen, L.A. Archer, Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells, Angew. Chem. Int. Ed. 59 (2020) 3048–3052. doi: 10.1002/anie.201912634
|
[17] |
M.T. Xia, X.K. Zhang, H.X. Yu, Z.W. Yang, S. Chen, L.Y. Zhang, M. Shui, Y. Xie, J. Shu, Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries, Chem. Eng. J. 421 (2021) 127759. doi: 10.1016/j.cej.2020.127759
|
[18] |
Y.D. Zhang, Y.F. An, B. Yin, J.M. Jiang, S.Y. Dong, H. Dou, X.G. Zhang, A novel aqueous ammonium dual-ion battery based on organic polymers, J. Mater. Chem. A 7 (2019) 11314–11320. doi: 10.1039/C9TA00254E
|
[19] |
X.K. Zhang, M.T. Xia, T.T. Liu, N. Peng, H.X. Yu, R.T. Zheng, L.Y. Zhang, M. Shui, J. Shu, Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage, Chem. Eng. J. 421 (2021) 127767. doi: 10.1016/j.cej.2020.127767
|
[20] |
Q. Zhang, K.X. Xia, Y.L. Ma, Y. Lu, L. Li, J. Liang, S.L. Chou, J. Chen, Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries, ACS Energy Lett. 6 (2021) 2704–2712. doi: 10.1021/acsenergylett.1c01054
|
[21] |
J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability, J. Phys. Chem. Lett. 8 (2017) 4362–4367. doi: 10.1021/acs.jpclett.7b01879
|
[22] |
F. Wang, X.L. Fan, T. Gao, W. Sun, Z.H. Ma, C.Y. Yang, F.D. Han, K. Xu, C.S. Wang, High-Voltage aqueous magnesium ion batteries, ACS Cent. Sci. 3 (2017) 1121–1128. doi: 10.1021/acscentsci.7b00361
|
[23] |
L.M. Suo, O. Borodin, Y.S. Wang, X.H. Rong, W. Sun, X.L. Fan, S.Y. Xu, M.A. Schroeder, A.V. Cresce, F. Wang, C.Y. Yang, Y. -S. Hu, K. Xu, C.S. Wang, "Water-in-Salt" electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting, Adv. Energy Mater. 7 (2017) 1701189. doi: 10.1002/aenm.201701189
|
[24] |
M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels, Y. Cui, Z.N. Bao, Concentrated mixed cation acetate "water-in-salt" solutions as green and low-cost high voltage electrolytes for aqueous batteries, Energy Environ. Sci. 11 (2018) 2876–2883. doi: 10.1039/C8EE00833G
|
[25] |
T. Jin, X. Ji, P.F. Wang, K.J. Zhu, J.X. Zhang, L.S. Cao, L. Chen, C.Y. Cui, T. Deng, S.F. Liu, N. Piao, Y.C. Liu, C. Shen, K.Y. Xie, L.F. Jiao, C.S. Wang, High-energy aqueous sodium-ion batteries, Angew. Chem. Int. Ed. 60 (2021) 11943–11948. doi: 10.1002/anie.202017167
|
[26] |
Q. Zhang, Y.L. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun. 11 (2020) 4463. doi: 10.1038/s41467-020-18284-0
|
[27] |
F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun, F.D. Han, A. Faraone, J.A. Dura, K. Xu, C.S. Wang, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater. 17 (2018) 543–549. doi: 10.1038/s41563-018-0063-z
|
[28] |
J.J. Holoubek, H. Jiang, D. Leonard, Y.T. Qi, G.C. Bustamante, X.L. Ji, Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-insalt electrolyte, Chem. Commun. 54 (2018) 9805–9808. doi: 10.1039/C8CC04713H
|
[29] |
N. Wang, R.K. Zhou, H. Li, Z.L. Zheng, W.X. Song, T. Xin, M.J. Hu, J.Z. Liu, New insights into the electrochemistry of carbonyl- and amino-containing polymers for rechargeable zinc-organic batteries, ACS Energy Lett. 6 (2021) 1141–1147. doi: 10.1021/acsenergylett.1c00139
|
[30] |
Y. Zhao, Y.N. Wang, Z.M. Zhao, J.W. Zhao, T. Xin, N. Wang, J.Z. Liu, Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporouscarbon-supported poly(1, 5-naphthalenediamine) nanorods as cathode, Energy Storage Mater. 28 (2020) 64–72. doi: 10.1016/j.ensm.2020.03.001
|
[31] |
C. Li, D. Zhang, F. Ma, T. Ma, J. Wang, Y. Chen, Y. Zhu, L. Fu, Y. Wu, W. Huang, A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery, ChemSusChem 12 (2019) 3732–3736. doi: 10.1002/cssc.201901622
|
[32] |
X.Y. Wu, Y.T. Qi, J.J. Hong, Z.F. Li, A.S. Hernandez, X.L. Ji, Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system, Angew. Chem. Int. Ed. 56 (2017) 13026–13030. doi: 10.1002/anie.201707473
|
[33] |
C.D. Wessells, S.V. Peddada, M.T. McDowell, R.A. Huggins, Y. i. Cui, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc. 159 (2011) A98–A103. doi: 10.1149/2.060202jes
|
[34] |
C.Y. Li, Y.Q. Yan, W. Yan, S.S. Liang, P. Wang, J. Wang, L.J. Fu, Y.S. Zhu, Y.H. Chen, Y.P. Wu, W. Huang, Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage, Nanoscale Horiz. 4 (2019) 991–998. doi: 10.1039/C8NH00484F
|
[35] |
Y.B. Yuan, D. Bin, X.L. Dong, Y.G. Wang, C.X. Wang, Y.Y. Xia, Intercalation pseudocapacitive nanoscale nickel Hexacyanoferrate@Carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery, ACS Sustain. Chem. Eng. 8 (2020) 3655–3663. doi: 10.1021/acssuschemeng.9b06588
|
[36] |
S.T. Senthilkumar, M. Abirami, J. Kim, W. Go, S.M. Hwang, Y. Kim, Sodium-ion hybrid electrolyte battery for sustainable energy storage applications, J. Power Sources 341 (2017) 404–410. doi: 10.1016/j.jpowsour.2016.12.015
|
[37] |
Y. Xu, M. Chang, C. Fang, Y. Liu, Y.G. Qiu, M.Y. Ou, J. Peng, P. Wei, Z. Deng, S.X. Sun, X.P. Sun, Q. Li, J.T. Han, Y.H. Huang, In situ FTIR-assisted synthesis of nickel hexacyanoferrate cathodes for long-life sodium-ion batteries, ACS Appl. Mater. Interfaces 11 (2019) 29985–29992. doi: 10.1021/acsami.9b10312
|
[38] |
R. Rehman, J. Peng, H.C. Yi, Y. Shen, J.W. Yin, C. Li, C. Fang, Q. Li, J.T. Han, Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries, RSC Adv. 10 (2020) 27033–27041. doi: 10.1039/D0RA03490H
|
[40] |
H. Li, J. Yang, J.L. Cheng, T. He, B. Wang, Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life, Nano Energy 68 (2020) 104369. doi: 10.1016/j.nanoen.2019.104369
|
[41] |
S.Y. Dong, W. Shin, H. Jiang, X.Y. Wu, Z.F. Li, J. Holoubek, W.F. Stickle, B. Key, C. Liu, J. Lu, P.A. Greaney, X.G. Zhang, X.L. Ji, Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5, Inside Chem. 5 (2019) 1537–1551.
|
[42] |
G.J. Liang, Y.L. Wang, Z.D. Huang, F.N. Mo, X.L. Li, Q. Yang, D.H. Wang, H.F. Li, S.M. Chen, C.Y. Zhi, Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry, Adv. Mater. 32 (2020) 1907802. doi: 10.1002/adma.201907802
|
[43] |
W.H. Ren, X.J. Chen, C. Zhao, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage, Adv. Energy Mater. 8 (2018) 1801413. doi: 10.1002/aenm.201801413
|
[44] |
C. Wu, S.C. Gu, Q.H. Zhang, Y. Bai, M. Li, Y.F. Yuan, H.L. Wang, X.Y. Liu, Y.X. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery, Nat. Commun. 10 (2019) 73. doi: 10.1038/s41467-018-07980-7
|
[45] |
M.T. Xia, X.K. Zhang, T.T. Liu, H.X. Yu, S. Chen, N. Peng, R.T. Zheng, J.D. Zhang, J. Shu, Commercially available Prussian blue get energetic in aqueous K-ion batteries, Chem. Eng. J. 394 (2020) 124923. doi: 10.1016/j.cej.2020.124923
|
[46] |
N.N. Chang, T.Y. Li, R. Li, S.N. Wang, Y.B. Yin, H.M. Zhang, X.F. Li, An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices, Energy Environ. Sci. 13 (2020) 3527–3535. doi: 10.1039/D0EE01538E
|
[47] |
Q. Zhao, W.W. Huang, Z.Q. Luo, L.J. Liu, Y. Lu, Y.X. Li, L. Li, J.Y. Hu, H. Ma, J. Chen, High-capacity aqueous zinc batteries using sustainable quinone electrodes, Sci. Adv. 4 (2018), eaao1761. doi: 10.1126/sciadv.aao1761
|
[48] |
Z.W. Guo, Y.Y. Ma, X.L. Dong, J.H. Huang, Y.G. Wang, Y.Y. Xia, An environmentally friendly and flexible aqueous zinc battery using an organic cathode, Angew. Chem. Int. Ed. 57 (2018) 11737–11741. doi: 10.1002/anie.201807121
|
[49] |
L. Chen, J.L. Bao, X.L. Dong, D.G. Truhlar, Y.G. Wang, C.X. Wang, Y.Y. Xia, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode, ACS Energy Lett. 2 (2017) 1115–1121. doi: 10.1021/acsenergylett.7b00040
|