Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wang Yue, Wang Zhixuan, Wu Dengxu, Niu Quanhai, Lu Pushun, Ma Tenghuan, Su Yibo, Chen Liquan, Li Hong, Wu Fan. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery[J]. eScience, 2022, 2(5): 537-545. doi: 10.1016/j.esci.2022.06.001
Citation: Wang Yue, Wang Zhixuan, Wu Dengxu, Niu Quanhai, Lu Pushun, Ma Tenghuan, Su Yibo, Chen Liquan, Li Hong, Wu Fan. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery[J]. eScience, 2022, 2(5): 537-545. doi: 10.1016/j.esci.2022.06.001

Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery

doi: 10.1016/j.esci.2022.06.001
More Information
  • Corresponding author: Fan Wu, Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, 213300, Jiangsu, China. E-mail address: fwu@iphy.ac.cn (F. Wu)
  • Received Date: 2022-01-28
  • Revised Date: 2022-05-21
  • Accepted Date: 2022-06-07
  • Available Online: 2022-06-14
  • Sulfide-based all-solid-state lithium-ion batteries (ASSLIBs) are one of the most promising energy storage technologies due to their high safety and ionic conductivity. To achieve greater energy density, a Ni-rich layered oxide LiNixCoyM1-x-yO2 (NCM, M ​= ​Mn/Al, x ​≥ ​0.6) is desirable due to its relatively high voltage and large capacity. However, interfacial side reactions between the NCM and sulfide solid electrolytes lead to undesirable interfacial passivation layers and low ionic conductivity, thereby degrading the electrochemical performance of NCM sulfide all-solid-state batteries. Herein, a time-/cost-effective sulfidation strategy is exploited to sulfidize a Ni-rich NCM88 cathode in a mixed gas atmosphere of N2 and CS2. A new type of cathode (NCM88-S) with an ultrathin (~2 ​nm) surface layer is obtained, which significantly reduces the interfacial side reactions/resistance and improves the interfacial stability. The resulting NCM88-S/Li6PS5Cl/Li4Ti5O12 ASSLIB exhibits superior performance, including a high discharge specific capacity (200.7 mAh g−1) close to that of liquid batteries, excellent cycling performance (a capacity retention of 87% after 500 cycles), and satisfactory rate performance (158.3 mAh g−1 at 1C).
  • ● The compatibility between Ni-rich cathode and sulfide solid electrolytes is improved.
    ● Excellent cycling performance after 500 cycles and rate performance are exhibited.
    ● New type of Ni-rich cathode with surface layer is obtained by a effective sulfidation strategy.
    Y. W. and F. W. conceived the idea, designed the experiments, and analyzed the results. Y. W. performed the experiments. Y. W., P. L., Q. N., and T. M. analyzed the data. Y. W., Z. W., and D. W. wrote the manuscript. F. W., H. L., and L. C. wrote and revised the manuscript. F. W. supervised the project. All authors discussed the results and commented on the manuscript.
    Author contributions
    Declaration of competing interest
    The authors declare no competing financial interests.
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.esci.2022.06.001.
    Appendix A. Supplementary data
  • loading
  • eScience-2-5-537.docx
  • [1]
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359367.
    [2]
    M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652657.
    [3]
    L. Liu, W. Fan, H. Li, L.Q. Chen, Advances in electrochemical stability of sulfide solid-state electrolyte, J. Chin. Ceram. Soc. 47 (2019) 1–19.
    [4]
    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. doi: 10.1021/cm901452z
    [5]
    Y.J. Wu, S. Wang, H. Li, L.Q. Chen, F. Wu, Progress in thermal stability of all-solid-state-Li-ion-batteries, InfoMat 3 (2021) 827–853. doi: 10.1002/inf2.12224
    [6]
    R.C. Agrawal, G.P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D. 41 (2008) 223001. doi: 10.1088/0022-3727/41/22/223001
    [7]
    J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195 (2010) 4554–4569. doi: 10.1016/j.jpowsour.2010.01.076
    [8]
    L. Buannic, B. Orayech, J.M.L. del Amo, J. Carrasco, N.A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, A. Llordes, Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte, Chem. Mater. 29 (2017) 1769–1778. doi: 10.1021/acs.chemmater.6b05369
    [9]
    Q. Liu, Z. Geng, C.P. Hui, C.P. Han, Y.Z. Fu, S. Li, Y.B. He, F.Y. Kang, B.H. Li, Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries, J. Power Sources 389 (2018) 120–134. doi: 10.1016/j.jpowsour.2018.04.019
    [10]
    S. Wang, Y.J. Wu, H. Li, L.Q. Chen, F. Wu, Improving thermal stability of sulfide solid electrolytes: an intrinsic theoretical paradigm, InfoMat (2022) e12316.
    [11]
    P. Lu, L. Liu, S. Wang, J.R. Xu, J. Peng, W.L. Yan, Q.C. Wang, H. Li, L.Q. Chen, F. Wu, Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity, Adv. Mater. (2021) 2100921.
    [12]
    F. Wu, W. Fitzhugh, L.H. Ye, J.X. Ning, X. Li, Advanced sulfide solid electrolyte by core-shell structural design, Nat. Commun. 9 (2018) 4037. doi: 10.1038/s41467-018-06123-2
    [13]
    W. Fitzhugh, F. Wu, L.H. Ye, H.Q. Su, X. Li, Strain-stabilized ceramic-sulfide electrolytes, Small 15 (2019) 1901470. doi: 10.1002/smll.201901470
    [14]
    X. Lu, O. Camara, Z. Liu, A. Windmüller, C.L. Tsai, H. Tempel, S.C. Yu, H. Kungl, R.A. Eichel, Tuning the moisture stability of multiphase β-Li3PS4 solid electrolyte materials, Electrochem. Sci. Adv (2022) e2100208.
    [15]
    A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun. 3 (2012) 856. doi: 10.1038/ncomms1843
    [16]
    W. Fitzhugh, F. Wu, L.H. Ye, W.Y. Deng, P.F. Qi, X. Li, A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors, Adv. Energy Mater. 9 (2019) 1900807. doi: 10.1002/aenm.201900807
    [17]
    Y.S. Jung, D.Y. Oh, Y.J. Nam, K.H. Park, Issues and challenges for bulk-type All-solid-state rechargeable lithium batteries using sulfide solid electrolytes, Isr. J. Chem. 55 (2015) 472–485. doi: 10.1002/ijch.201400112
    [18]
    J.R. Xu, L. Liu, N. Yao, F. Wu, H. Li, L.Q. Chen, Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries, Mater. Today Nano 8 (2019) 100048. doi: 10.1016/j.mtnano.2019.100048
    [19]
    Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 4 (2016) 16030.
    [20]
    L. Liu, J.R. Xu, S. Wang, F. Wu, H. Li, L.Q. Chen, Practical evaluation of energy densities for sulfide solid-state batteries, eTransportation 1 (2019) 100010. doi: 10.1016/j.etran.2019.100010
    [21]
    J. Peng, D.X. Wu, F.M. Song, S. Wang, Q.H. Niu, J.R. Xu, P.S. Lu, H. Li, L.Q. Chen, F. Wu, High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode, Adv. Funct. Mater. (2021) 2105776.
    [22]
    J.R. Xu, Y.X. Li, P.S. Lu, W.L. Yan, M. Yang, H. Li, L.Q. Chen, F. Wu, Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-Conducting protection layer, Adv. Energy Mater. 12 (2021) 2102348.
    [23]
    F. Wu, L. Liu, S. Wang, J.R. Xu, P.S. Lu, W.L. Yan, J. Peng, D.X. Wu, H. Li, Solid state ionics - selected topics and new directions, Prog. Mater. Sci. 126 (2022) 100921. doi: 10.1016/j.pmatsci.2022.100921
    [24]
    Q. Xu, X.F. Li, H.M.K. Sari, W.B. Li, W. Liu, Y.C. Hao, J. Qin, B. Cao, W. Xiao, Y. Xu, Y. Wei, L. Kou, Z.Y. Tian, L. Shao, C. Zhang, X.L. Sun, Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides, Nano Energy 77 (2020) 105034. doi: 10.1016/j.nanoen.2020.105034
    [25]
    J.H. Wu, L. Shen, Z.H. Zhang, G.Z. Liu, Z.Y. Wang, D. Zhou, H.L. Wan, X.X. Xu, X.Y. Yao, All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes, Electro. Energy. Rev. 4 (2020) 411.
    [26]
    Y. Wang, Y. Lv, Y.B. Su, L.Q. Chen, H. Li, F. Wu, 5V-Class sulfurized spinel cathode stable in sulfide all-solid-state batteries, Nano Energy 90 (2021) 106589. doi: 10.1016/j.nanoen.2021.106589
    [27]
    S.Y. Jung, R. Rajagopal, K.S. Ryu, The electrochemical performance of Li2CuO2–CuO composite-treated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries, Mater. Chem. Phys. 270 (2021) 124808. doi: 10.1016/j.matchemphys.2021.124808
    [28]
    X. Li, Q. Sun, Z. Wang, D.W. Song, H.Z. Zhang, X.X. Shi, C.L. Li, L.Z. Zhang, L.Y. Zhu, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources 456 (2020) 227997. doi: 10.1016/j.jpowsour.2020.227997
    [29]
    Y.J. Kim, R. Rajagopal, S. Kang, K.S. Ryu, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chem. Eng. J. 386 (2020) 123975. doi: 10.1016/j.cej.2019.123975
    [30]
    D. Kitsche, Y. Tang, Y. Ma, D.M. Goonetilleke, J. Sann, F. Walther, M. Bianchini, J. Janek, T. Brezesinski, High performance all-solid-state batteries with a Ni-rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte, ACS Appl. Energy Mater. 4 (2021) 7338–7345. doi: 10.1021/acsaem.1c01487
    [31]
    Y.C. Li, W. Xiang, Z.G. Wu, C.L. Xu, Y.D. Xu, Y. Xiao, Z.G. Yang, C.J. Wu, G.P. Lv, X.D. Guo, Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation, Electrochim. Acta 291 (2018) 84–94. doi: 10.1016/j.electacta.2018.08.124
    [32]
    I.M. Markus, F. Lin, K.C. Kam, M. Asta, M.M. Doeff, Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1-2x-yTiy)O2 for lithium ion batteries, J. Phys. Chem. Lett. 21 (2014) 3649–3655.
    [33]
    M. Chen, E.Y. Zhao, D.F. Chen, M.M. Wu, S.B. Han, Q.Z. Huang, L.M. Yang, X.L. Xiao, Z.B. Hu, Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping, Inorg. Chem. 56 (2017) 8355–8362. doi: 10.1021/acs.inorgchem.7b01035
    [34]
    I. Saadoune, C. Delmas, LiNi1yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour, J. Mater. Chem. 6 (1996) 193–199. doi: 10.1039/JM9960600193
    [35]
    Z.H. Sun, L.Q. Xu, C.Q. Dong, H.T. Zhang, M.T. Zhang, Y.F. Ma, Y.Y. Liu, Z.J. Li, Y. Zhou, Y. Han, Y.S. Chen, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance, Nano Energy 63 (2019) 103887.
    [36]
    A. Banerjee, H.M. Tang, X.F. Wang, J. Cheng, H. Nguyen, M.H. Zhang, D. Tan, T. Wynn, E. Wu, J.M. Dou, T.P. Wu, L. Ma, G.E. Sterbinsky, M. Dsouza, S.P. Ong, Y.S. Meng, Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces 11 (2019) 43138–43145. doi: 10.1021/acsami.9b13955
    [37]
    A. Azcatl, S. McDonnell, X. Peng, K.C. Santosh, X. Peng, H. Dong, X.Y. Qin, R. Addou, G.I. Mordi, N. Lu, J.Y. Kim, M.J. Kim, K. Cho, R.M. Wallace, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics, Appl. Phys. Lett. 104 (2014) 111601. doi: 10.1063/1.4869149
    [38]
    A. Khosravi, R. Addou, M. Catalano, J.Y. Kim, R.M. Wallace, High-κ dielectric on ReS2: in-situ thermal versus plasma-enhanced atomic layer deposition of Al2O3, Materials 12 (2019) 1056. doi: 10.3390/ma12071056
    [39]
    J.H. Kim, H.H. Ryu, S.J. Kim, C.S. Yoon, Y.K. Sun, Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9, ACS Appl. Mater. Interfaces 11 (2019) 30936–30942. doi: 10.1021/acsami.9b09754
    [40]
    H.H. Ryu, K.J. Park, S.Y. Chong, Y.K. Sun, Capacity fading of Ni-rich Li [NixCoyMn1xy]O2 (0.6 x 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30 (2018) 1155–1163. doi: 10.1021/acs.chemmater.7b05269
    [41]
    H.H. Ryu, G.T. Park, S.Y. Chong, Y.K. Sun, Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries, J. Mater. Chem. 7 (2019) 18580–18588. doi: 10.1039/C9TA06402H
    [42]
    J.R. Dahn, J.W. Jiang, L.M. Moshurchak, M.D. Fleischauer, C. Buhrmester, L.J. Krausec, High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2, 5-Ditertbutyl-1, 4-dimethoxybenzene, J. Electrochem. Soc. 152 (2015) A1283–A1289.
    [43]
    B. Yan, M.S. Li, X.F. Li, Z.M. Bai, J.W. Wang, D.B. Xiong, D.J. Li, Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode, J. Mater. Chem. 22 (2015) 11773–11781.
    [44]
    J. Auvergniot, A. Cassel, D. Foix, V. Viallet, V. Seznec, R. Dedryvere, Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study, Solid State Ionics 300 (2017) 78–85. doi: 10.1016/j.ssi.2016.11.029
    [45]
    R. Koerver, F. Walther, I. Aygün, J. Sann, C. Dietrich, W.G. Zeier, J. Janek, Redox-active cathode interphases in solid-state batteries, J. Mater. Chem. 5 (2017) 22750–22760. doi: 10.1039/C7TA07641J
    [46]
    J. Zhang, C. Zheng, L.J. Li, Y. Xia, H. Huang, Y.P. Gan, C. Liang, X.P. He, X.Y. Tao, W.K. Zhang, Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries, Adv. Energy Mater. 10 (2019) 2070017.
    [47]
    R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W.B. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, J. Janek, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater. 29 (2017) 5574–5582. doi: 10.1021/acs.chemmater.7b00931
    [48]
    J. Zhang, H.Y. Zhang, C. Zheng, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, W.K. Zhang, All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content, J. Power Sources 391 (2018) 73–79. doi: 10.1016/j.jpowsour.2018.04.069
    [49]
    H. Visbal, S. Fujiki, Y. Aihara, T. Watanabe, Y.S. Park, S. Doo, The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance, J. Power Sources 269 (2014) 396–402. doi: 10.1016/j.jpowsour.2014.07.021
    [50]
    H. Visbal, Y. Aihara, S. Ito, T. Watanabe, Y.S. Park, S. Doo, The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics, J. Power Sources 314 (2016) 85–92. doi: 10.1016/j.jpowsour.2016.02.088
    [51]
    F. Strauss, T. Bartsch, L. de Biasi, A.Y. Kim, J. Janek, P. Hartmann, T. Brezesinski, Impact of cathode material particle size on the capacity of bulk-type All-solid-state batteries, ACS Energy Lett. 3 (2018) 992–996. doi: 10.1021/acsenergylett.8b00275
    [52]
    A.Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann, T. Brezesinski, Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries, Chem. Mater. 31 (2019) 9664–9672. doi: 10.1021/acs.chemmater.9b02947
    [53]
    G. Peng, X.Y. Yao, H.L. Wan, B.X. Huang, J.Y. Yin, F. Ding, X.X. Xu, Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte, J. Power Sources 307 (2016) 724–730. doi: 10.1016/j.jpowsour.2016.01.039
    [54]
    D.Y. Oh, D.H. Kim, S.H. Jung, J.G. Han, N.S. Choi, Y.S. Jung, Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries, J. Mater. Chem. A 5 (2017) 20771–20779. doi: 10.1039/C7TA06873E
    [55]
    Y.J. Nam, D.Y. Oh, S.H. Jung, Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes, J. Power Sources 375 (2018) 93–101. doi: 10.1016/j.jpowsour.2017.11.031
    [56]
    X.L. Li, Y.M. Sun, Z.Y. Wang, X.Q. Wang, H.Z. Zhang, D.W. Song, L.Q. Zhang, L.Y. Zhu, High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries, Electrochim. Acta 391 (2021) 138917. doi: 10.1016/j.electacta.2021.138917
    [57]
    Y.B. Zhang, X. Sun, D.X. Cao, G.H. Gao, Z.Z. Yang, H.L. Zhu, Y. Wang, Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Stor. Mater. 41 (2021) 505–514. doi: 10.1016/j.ensm.2021.06.024
    [58]
    X.L. Li, W.X. Peng, R.Z. Tian, D.W. Song, Z.Y. Wang, H.Z. Zhang, L.Y. Zhu, L.Q. Zhang, Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries, Electrochim. Acta 363 (2020) 137185. doi: 10.1016/j.electacta.2020.137185
    [59]
    F. Walther, F. Strauss, X.H. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski, J. Janek, The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries, Chem. Mater. 33 (2021) 2110–2125. doi: 10.1021/acs.chemmater.0c04660
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (660) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return