Citation: | Wang Yue, Wang Zhixuan, Wu Dengxu, Niu Quanhai, Lu Pushun, Ma Tenghuan, Su Yibo, Chen Liquan, Li Hong, Wu Fan. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery[J]. eScience, 2022, 2(5): 537-545. doi: 10.1016/j.esci.2022.06.001 |
![]() |
![]() |
[1] |
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359367.
|
[2] |
M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652657.
|
[3] |
L. Liu, W. Fan, H. Li, L.Q. Chen, Advances in electrochemical stability of sulfide solid-state electrolyte, J. Chin. Ceram. Soc. 47 (2019) 1–19.
|
[4] |
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. doi: 10.1021/cm901452z
|
[5] |
Y.J. Wu, S. Wang, H. Li, L.Q. Chen, F. Wu, Progress in thermal stability of all-solid-state-Li-ion-batteries, InfoMat 3 (2021) 827–853. doi: 10.1002/inf2.12224
|
[6] |
R.C. Agrawal, G.P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D. 41 (2008) 223001. doi: 10.1088/0022-3727/41/22/223001
|
[7] |
J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195 (2010) 4554–4569. doi: 10.1016/j.jpowsour.2010.01.076
|
[8] |
L. Buannic, B. Orayech, J.M.L. del Amo, J. Carrasco, N.A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, A. Llordes, Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte, Chem. Mater. 29 (2017) 1769–1778. doi: 10.1021/acs.chemmater.6b05369
|
[9] |
Q. Liu, Z. Geng, C.P. Hui, C.P. Han, Y.Z. Fu, S. Li, Y.B. He, F.Y. Kang, B.H. Li, Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries, J. Power Sources 389 (2018) 120–134. doi: 10.1016/j.jpowsour.2018.04.019
|
[10] |
S. Wang, Y.J. Wu, H. Li, L.Q. Chen, F. Wu, Improving thermal stability of sulfide solid electrolytes: an intrinsic theoretical paradigm, InfoMat (2022) e12316.
|
[11] |
P. Lu, L. Liu, S. Wang, J.R. Xu, J. Peng, W.L. Yan, Q.C. Wang, H. Li, L.Q. Chen, F. Wu, Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity, Adv. Mater. (2021) 2100921.
|
[12] |
F. Wu, W. Fitzhugh, L.H. Ye, J.X. Ning, X. Li, Advanced sulfide solid electrolyte by core-shell structural design, Nat. Commun. 9 (2018) 4037. doi: 10.1038/s41467-018-06123-2
|
[13] |
W. Fitzhugh, F. Wu, L.H. Ye, H.Q. Su, X. Li, Strain-stabilized ceramic-sulfide electrolytes, Small 15 (2019) 1901470. doi: 10.1002/smll.201901470
|
[14] |
X. Lu, O. Camara, Z. Liu, A. Windmüller, C.L. Tsai, H. Tempel, S.C. Yu, H. Kungl, R.A. Eichel, Tuning the moisture stability of multiphase β-Li3PS4 solid electrolyte materials, Electrochem. Sci. Adv (2022) e2100208.
|
[15] |
A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun. 3 (2012) 856. doi: 10.1038/ncomms1843
|
[16] |
W. Fitzhugh, F. Wu, L.H. Ye, W.Y. Deng, P.F. Qi, X. Li, A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors, Adv. Energy Mater. 9 (2019) 1900807. doi: 10.1002/aenm.201900807
|
[17] |
Y.S. Jung, D.Y. Oh, Y.J. Nam, K.H. Park, Issues and challenges for bulk-type All-solid-state rechargeable lithium batteries using sulfide solid electrolytes, Isr. J. Chem. 55 (2015) 472–485. doi: 10.1002/ijch.201400112
|
[18] |
J.R. Xu, L. Liu, N. Yao, F. Wu, H. Li, L.Q. Chen, Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries, Mater. Today Nano 8 (2019) 100048. doi: 10.1016/j.mtnano.2019.100048
|
[19] |
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 4 (2016) 16030.
|
[20] |
L. Liu, J.R. Xu, S. Wang, F. Wu, H. Li, L.Q. Chen, Practical evaluation of energy densities for sulfide solid-state batteries, eTransportation 1 (2019) 100010. doi: 10.1016/j.etran.2019.100010
|
[21] |
J. Peng, D.X. Wu, F.M. Song, S. Wang, Q.H. Niu, J.R. Xu, P.S. Lu, H. Li, L.Q. Chen, F. Wu, High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode, Adv. Funct. Mater. (2021) 2105776.
|
[22] |
J.R. Xu, Y.X. Li, P.S. Lu, W.L. Yan, M. Yang, H. Li, L.Q. Chen, F. Wu, Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-Conducting protection layer, Adv. Energy Mater. 12 (2021) 2102348.
|
[23] |
F. Wu, L. Liu, S. Wang, J.R. Xu, P.S. Lu, W.L. Yan, J. Peng, D.X. Wu, H. Li, Solid state ionics - selected topics and new directions, Prog. Mater. Sci. 126 (2022) 100921. doi: 10.1016/j.pmatsci.2022.100921
|
[24] |
Q. Xu, X.F. Li, H.M.K. Sari, W.B. Li, W. Liu, Y.C. Hao, J. Qin, B. Cao, W. Xiao, Y. Xu, Y. Wei, L. Kou, Z.Y. Tian, L. Shao, C. Zhang, X.L. Sun, Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides, Nano Energy 77 (2020) 105034. doi: 10.1016/j.nanoen.2020.105034
|
[25] |
J.H. Wu, L. Shen, Z.H. Zhang, G.Z. Liu, Z.Y. Wang, D. Zhou, H.L. Wan, X.X. Xu, X.Y. Yao, All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes, Electro. Energy. Rev. 4 (2020) 411.
|
[26] |
Y. Wang, Y. Lv, Y.B. Su, L.Q. Chen, H. Li, F. Wu, 5V-Class sulfurized spinel cathode stable in sulfide all-solid-state batteries, Nano Energy 90 (2021) 106589. doi: 10.1016/j.nanoen.2021.106589
|
[27] |
S.Y. Jung, R. Rajagopal, K.S. Ryu, The electrochemical performance of Li2CuO2–CuO composite-treated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries, Mater. Chem. Phys. 270 (2021) 124808. doi: 10.1016/j.matchemphys.2021.124808
|
[28] |
X. Li, Q. Sun, Z. Wang, D.W. Song, H.Z. Zhang, X.X. Shi, C.L. Li, L.Z. Zhang, L.Y. Zhu, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources 456 (2020) 227997. doi: 10.1016/j.jpowsour.2020.227997
|
[29] |
Y.J. Kim, R. Rajagopal, S. Kang, K.S. Ryu, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chem. Eng. J. 386 (2020) 123975. doi: 10.1016/j.cej.2019.123975
|
[30] |
D. Kitsche, Y. Tang, Y. Ma, D.M. Goonetilleke, J. Sann, F. Walther, M. Bianchini, J. Janek, T. Brezesinski, High performance all-solid-state batteries with a Ni-rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte, ACS Appl. Energy Mater. 4 (2021) 7338–7345. doi: 10.1021/acsaem.1c01487
|
[31] |
Y.C. Li, W. Xiang, Z.G. Wu, C.L. Xu, Y.D. Xu, Y. Xiao, Z.G. Yang, C.J. Wu, G.P. Lv, X.D. Guo, Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation, Electrochim. Acta 291 (2018) 84–94. doi: 10.1016/j.electacta.2018.08.124
|
[32] |
I.M. Markus, F. Lin, K.C. Kam, M. Asta, M.M. Doeff, Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1-2x-yTiy)O2 for lithium ion batteries, J. Phys. Chem. Lett. 21 (2014) 3649–3655.
|
[33] |
M. Chen, E.Y. Zhao, D.F. Chen, M.M. Wu, S.B. Han, Q.Z. Huang, L.M. Yang, X.L. Xiao, Z.B. Hu, Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping, Inorg. Chem. 56 (2017) 8355–8362. doi: 10.1021/acs.inorgchem.7b01035
|
[34] |
I. Saadoune, C. Delmas, LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour, J. Mater. Chem. 6 (1996) 193–199. doi: 10.1039/JM9960600193
|
[35] |
Z.H. Sun, L.Q. Xu, C.Q. Dong, H.T. Zhang, M.T. Zhang, Y.F. Ma, Y.Y. Liu, Z.J. Li, Y. Zhou, Y. Han, Y.S. Chen, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance, Nano Energy 63 (2019) 103887.
|
[36] |
A. Banerjee, H.M. Tang, X.F. Wang, J. Cheng, H. Nguyen, M.H. Zhang, D. Tan, T. Wynn, E. Wu, J.M. Dou, T.P. Wu, L. Ma, G.E. Sterbinsky, M. Dsouza, S.P. Ong, Y.S. Meng, Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces 11 (2019) 43138–43145. doi: 10.1021/acsami.9b13955
|
[37] |
A. Azcatl, S. McDonnell, X. Peng, K.C. Santosh, X. Peng, H. Dong, X.Y. Qin, R. Addou, G.I. Mordi, N. Lu, J.Y. Kim, M.J. Kim, K. Cho, R.M. Wallace, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics, Appl. Phys. Lett. 104 (2014) 111601. doi: 10.1063/1.4869149
|
[38] |
A. Khosravi, R. Addou, M. Catalano, J.Y. Kim, R.M. Wallace, High-κ dielectric on ReS2: in-situ thermal versus plasma-enhanced atomic layer deposition of Al2O3, Materials 12 (2019) 1056. doi: 10.3390/ma12071056
|
[39] |
J.H. Kim, H.H. Ryu, S.J. Kim, C.S. Yoon, Y.K. Sun, Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9, ACS Appl. Mater. Interfaces 11 (2019) 30936–30942. doi: 10.1021/acsami.9b09754
|
[40] |
H.H. Ryu, K.J. Park, S.Y. Chong, Y.K. Sun, Capacity fading of Ni-rich Li [NixCoyMn1–x–y]O2 (0.6 x 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30 (2018) 1155–1163. doi: 10.1021/acs.chemmater.7b05269
|
[41] |
H.H. Ryu, G.T. Park, S.Y. Chong, Y.K. Sun, Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries, J. Mater. Chem. 7 (2019) 18580–18588. doi: 10.1039/C9TA06402H
|
[42] |
J.R. Dahn, J.W. Jiang, L.M. Moshurchak, M.D. Fleischauer, C. Buhrmester, L.J. Krausec, High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2, 5-Ditertbutyl-1, 4-dimethoxybenzene, J. Electrochem. Soc. 152 (2015) A1283–A1289.
|
[43] |
B. Yan, M.S. Li, X.F. Li, Z.M. Bai, J.W. Wang, D.B. Xiong, D.J. Li, Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode, J. Mater. Chem. 22 (2015) 11773–11781.
|
[44] |
J. Auvergniot, A. Cassel, D. Foix, V. Viallet, V. Seznec, R. Dedryvere, Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study, Solid State Ionics 300 (2017) 78–85. doi: 10.1016/j.ssi.2016.11.029
|
[45] |
R. Koerver, F. Walther, I. Aygün, J. Sann, C. Dietrich, W.G. Zeier, J. Janek, Redox-active cathode interphases in solid-state batteries, J. Mater. Chem. 5 (2017) 22750–22760. doi: 10.1039/C7TA07641J
|
[46] |
J. Zhang, C. Zheng, L.J. Li, Y. Xia, H. Huang, Y.P. Gan, C. Liang, X.P. He, X.Y. Tao, W.K. Zhang, Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries, Adv. Energy Mater. 10 (2019) 2070017.
|
[47] |
R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W.B. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, J. Janek, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater. 29 (2017) 5574–5582. doi: 10.1021/acs.chemmater.7b00931
|
[48] |
J. Zhang, H.Y. Zhang, C. Zheng, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, W.K. Zhang, All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content, J. Power Sources 391 (2018) 73–79. doi: 10.1016/j.jpowsour.2018.04.069
|
[49] |
H. Visbal, S. Fujiki, Y. Aihara, T. Watanabe, Y.S. Park, S. Doo, The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance, J. Power Sources 269 (2014) 396–402. doi: 10.1016/j.jpowsour.2014.07.021
|
[50] |
H. Visbal, Y. Aihara, S. Ito, T. Watanabe, Y.S. Park, S. Doo, The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics, J. Power Sources 314 (2016) 85–92. doi: 10.1016/j.jpowsour.2016.02.088
|
[51] |
F. Strauss, T. Bartsch, L. de Biasi, A.Y. Kim, J. Janek, P. Hartmann, T. Brezesinski, Impact of cathode material particle size on the capacity of bulk-type All-solid-state batteries, ACS Energy Lett. 3 (2018) 992–996. doi: 10.1021/acsenergylett.8b00275
|
[52] |
A.Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann, T. Brezesinski, Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries, Chem. Mater. 31 (2019) 9664–9672. doi: 10.1021/acs.chemmater.9b02947
|
[53] |
G. Peng, X.Y. Yao, H.L. Wan, B.X. Huang, J.Y. Yin, F. Ding, X.X. Xu, Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte, J. Power Sources 307 (2016) 724–730. doi: 10.1016/j.jpowsour.2016.01.039
|
[54] |
D.Y. Oh, D.H. Kim, S.H. Jung, J.G. Han, N.S. Choi, Y.S. Jung, Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries, J. Mater. Chem. A 5 (2017) 20771–20779. doi: 10.1039/C7TA06873E
|
[55] |
Y.J. Nam, D.Y. Oh, S.H. Jung, Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes, J. Power Sources 375 (2018) 93–101. doi: 10.1016/j.jpowsour.2017.11.031
|
[56] |
X.L. Li, Y.M. Sun, Z.Y. Wang, X.Q. Wang, H.Z. Zhang, D.W. Song, L.Q. Zhang, L.Y. Zhu, High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries, Electrochim. Acta 391 (2021) 138917. doi: 10.1016/j.electacta.2021.138917
|
[57] |
Y.B. Zhang, X. Sun, D.X. Cao, G.H. Gao, Z.Z. Yang, H.L. Zhu, Y. Wang, Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Stor. Mater. 41 (2021) 505–514. doi: 10.1016/j.ensm.2021.06.024
|
[58] |
X.L. Li, W.X. Peng, R.Z. Tian, D.W. Song, Z.Y. Wang, H.Z. Zhang, L.Y. Zhu, L.Q. Zhang, Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries, Electrochim. Acta 363 (2020) 137185. doi: 10.1016/j.electacta.2020.137185
|
[59] |
F. Walther, F. Strauss, X.H. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski, J. Janek, The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries, Chem. Mater. 33 (2021) 2110–2125. doi: 10.1021/acs.chemmater.0c04660
|