Abstract: As electric vehicle (EV) sales grew approximately 50% year-over-year, surpassing 3.2 million units in 2020, the "roaring era" of EV is around the corner. To meet the increasing demand for low cost and high energy density batteries, anode-free configuration, with no heavy and voluminous host material...
Abstract: Sodium-ion batteries (SIBs) have attracted much scientific interest for use in large-scale energy storage systems because sodium is cheaper than lithium. However, the large radius of Na+ and barriers to Na+ transport result in sluggish kinetics and complicated structural distortion, leading to unsat...
Abstract: Pillararene/calixarene-based functional materials have garnered significant attention for their unique topological/chemical structures and physicochemical properties, and their extended applications in electrochemistry have given rise to a promising area of research. This review details current adva...
Abstract: Lithium–sulfur (Li–S) batteries are considered as a highly promising energy storage system due to their ultrahigh theoretical energy density. However, the sluggish kinetics of the complex multi-electron sulfur redox reactions seriously hinders the actual battery performance especially under practica...
Abstract: A smelting multiple recrystallization strategy and its effects on the morphology, composition, and defects of CsPbBrI2 film were investigated. An optimal number (n = 2) of recrystallization cycles improved the crystallinity and phase purity, minimized the grain boundaries, and optimized the crystal ...
Abstract: Organic electrode materials have exhibited good electrochemical performance in batteries, but their voltages and rate capabilities still require improvement to meet the increasing demand for batteries with high energy and power density. Herein, we design and synthesize a branched dihydrophenazine-ba...
Abstract: Electrochemical water splitting is a sustainable and feasible strategy for hydrogen production but is hampered by the sluggish anodic oxygen evolution reaction (OER). Herein, an effective approach is introduced to significantly decrease the cell voltage by replacing the anodic OER with a urea oxidat...
Abstract: Sodium/Potassium (Na/K) metal anodes have been considered as the promising anodes for next-generation Na/K secondary batteries owing to their ultrahigh specific capacity, low redox potential and low cost. However, their practical application is still hampered due to unstable solid electrolyte interp...
Abstract: The development of low-cost and eco-friendly aqueous electrolytes with a wide voltage window is the key to achieving safe high energy density supercapacitors (SCs). In this work, a molecular crowding electrolyte is prepared by simulating the crowded environment in living cells. Ion transport in the ...
Abstract: The efficiency and stability of typical three-dimensional (3D) MAPbI3 perovskite-based solar cells are highly restricted, due to the weak interaction between methylammonium (MA+) and [PbI6]4-octahedra in the 3D structure, which can cause the ion migration and the related defects. Here, we found that...